
Analysis and Design of Automotive Body
Control Module

Jianhui Ma, Zhixue Wang, Yanqiang Li and Liangjie Yu

Abstract In the BCM’s industrialization process, we need design appropriate
BCM for different car models. In order to reduce the complexity of the design
while avoiding duplication of design work, This paper summarize the experience
in the recent years design of the BCM, analyze the system structure, working
mechanism, and basic design principles based on one particular BCM section,
analyze its external interfaces attributes and complex control logic. Design
generic, common embedded software structures for body control and basic mod-
ules that can be configured and assembled, These software components is flexible
and configurable, based on the software structure and basic module library, we can
quickly start the development of appropriate body controller software for BCM of
different car models.

Keywords BCM � Software architecture � Portability

1 Introduction

Along with the development of automotive electronics and networking technology
widely used in automobiles, Body Control Module (BCM) integrated body net-
work gateway with lighting control, wiper control, window control, RKE key
access control and door lock control function, is becoming a mainstream.

F2012-D01-005

J. Ma (&) � Z. Wang � Y. Li � L. Yu
Shan Dong Key Laboratory of Automotive Electronics,
Automatic Institute of Shan Dong Academy, Jinan 250014, Shan Dong, China
e-mail: majialong@yahoo.com.cn

SAE-China and FISITA (eds.), Proceedings of the FISITA 2012 World
Automotive Congress, Lecture Notes in Electrical Engineering 194,
DOI: 10.1007/978-3-642-33829-8_3, � Springer-Verlag Berlin Heidelberg 2013

25



Although the BCM have many input and output interfaces, and complex control
logic, but the BCM of different car models is basically same in its works and
system structure, only have certain differences in module combination or some
specific module’s design, so it is necessary to analyze the system structure and
basic design principles of BCM based on one particular section, design generic,
common embedded software structures for body control and basic modules that
can be configured and assembled. Based on the software structure and basic
module library, we can quickly start the development of appropriate body
controller software for BCM of different car models, reduces development com-
plexity and improves the development efficiency. This software must have fol-
lowing features.

1. Using scalable reactive software architecture, adding new features without
breaking existing software structure, and won’t influence the behavior of
existing systems;

2. Establish an effective relationship between reuse and assembly, in the devel-
opment of new BCM module, avoid duplication of development of basic
software modules, and avoid increased costs and extended development cycle;

3. The software interface standards of the universal basic module have uniform
agreement, ensuring the independence of modules and portability at the level of
applications;

Combined with the development of BCM for a car model, the author analyzed
the design principle of BCM and the specific implementation from BCM system
structure, software architecture and the realization of part of the module.

2 System Structure

BCM is a typical body central controller combined centralized control and dis-
tributed control, its input interface includes a series of switch signals and driving
pulse signal, output interface is a series of control objects that includes locks,
lights, wipers, windows and alarm. At the same time, BCM communicates with
remote control keys by RF signal, and exchange information of control command
and status with sensor nodes and windows node via LIN bus. its external interface
shown in Fig. 1.

BCM is a typical control system, through the detection of the switching signal
and pulse signal and a series of combinational logic, achieve the load drive control,
also achieved RKE Keyless entry and anti-theft alarm function. At the same time,
as a Body Control LIN network master node, BCM scheduling the entire LIN
network communication and network management. Its system structure show in
Fig. 2, the output control is the core module of BCM, other function module also
include input signal detection, LIN communication, the RKE communication,
anti-theft alarm state management.

26 J. Ma et al.



3 Software Design

According to BCM design features and design resource requirements, while taking
into account the cost factor, the author chose the Freescale 16-bit automotive-
grade MCU to achieve its software design. As a basic software and design
solutions of a series of BCM, this paper analyzes the BCM software architecture
design and the programming of some modules, explain how to ensure software
scalability and module reusability from the system level and the micro level. In the
following, first analyzed BCM software architecture design, and then describe
timer management and switch signal detection these basic module’s realization.

3.1 Software Structure

In order to save the limited resources of MCU, the BCM software design does not
use the operating system, and because different car model BCM’s input detection,
output control, communication and control logic is or less the same, it is necessary
and feasible to design a common body control module software architecture.
Based on the software architecture solutions, develop appropriate body controller

BCM
Body controller

Turn light
Position 

light

light

Central lock

Wiper/wash
er

Switch signal 
traffic signal

Car speed sensor

Remote 
keyless 
entry

License 
plate light

Right front 
window ECU

Left rear 
window ECU

Right rear 
window ECU

rain/sun sensor

LIN

Indoor lightKeyhole light

External 
light

Internal 
light

High speed 
motor

Low speed 
motor

Fig. 1 BCM external interface diagram

Analysis and Design of Automotive Body Control Module 27



software for different models, improve ECU software reliability and development
efficiency, reduce development complexity.

The software structure is in the form of interrupt ? the main loop body. The
system enters main loop after power-on initialization, the body of the loop
including the following module: timer management, input signal detection and
statistic, signal reception and the extraction of LIN application layer, RKE com-
munication, anti-theft alarm status management, output control (including the
window control, wiper control, door lock control, alarm control, light control), fill
LIN send signals, clear event. The order of these modules in the loop is very
important, reflecting the working principle of the BCM, the main body of the loop
as follows:

for(;;)
{

TimerTick();
InputDetect();
l_SignalDetect();
Rke_Decrypte();
AlarmStateManage();
WindowControl();
WiperControl();
LockControl();
AlarmControl();

Input signal 
detection

Output control

Anti-theft alarm state 
management

LIN bus RKE

Lock control

Light control

Wiper control

Alarm control

communication

Window 
contrl=ol

Fig. 2 BCM system structure

28 J. Ma et al.



LightControl();
l_app();
l_Com();
ClearEvent();

}

First, timing information is the input signal of all other modules, so put the
timer management on the top of the loop body, and then, because switch control is
BCM’s main control logic, so followed by is the switch signal detection in the
main loop. Input signal of other control logic is pulse, LIN signal and RKE signal.
LIN data link layer is achieved in the UART receive interrupt service routine, and
application layer signal receiving part in l_SignalDetect. Rke_Decrypte achieve
remote control key’s learning, the RKE key signal detection and statistics. The
input signal of Alarm state management is switch signal and RKE signals, and also
it is the input signal of the output control logic, so placed Alarm State Manage
after Input Detect and Rke_Decrypte, followed by the output control and the the
filling of the LIN send signal.

All the control modules are event-driven, if an event occurs, then perform the
appropriate control logic. Since many events are shared, in order to ensure the
event to digest more than one module, put clear event operation—Clear Event on
the end of the main loop. Due to certain events is set in the interrupt, then it is need
to introduced the concept of synchronization in logic circuit design to software
architecture design, treat each entry of the main loop as a synchronous clock, the
event set in the interrupt is synchronized in the main loop, thus avoiding instability
that the event is cleared before been digested (Fig. 3).

3.2 Basic Module Design

3.2.1 Timer Management

BCM timing applications include statistics of input signal time characteristics, the
output logic timing and timeout handling, LIN master node schedules the rotation
of the time slice and IDLE time detection, which is characterized by the timing
accuracy is not required, but the timing number is more, based on these features,
designed timer management module.

Due to limited hardware timer and range of timing application, can’t assign
hardware timer for each timing applications, so use software timer simulate hardware
timer. According to the timing characteristics and classification of the application,
design software timer data structure in the form of structure, organized these software
timer in the form of a structure array, the array member is software timer node. As all
software timer reference clock source, the hardware timer is set to 1 ms cycle timing,
manage the hardware timer in the interrupt service routine-cumulative global clock
tick Jiffs, set clock synchronization flag TimerTicked to 1. In the main loop, function

Analysis and Design of Automotive Body Control Module 29



TimerTick performed all the software timer management according to TimerTicked
and Jiffs. So achieved simulate multiple software timer by a single hardware timer.

Software timer data structure is designed as follows:

typedef struct {

TimerState timer_state;
ulong timeout;
ulong duration;
unsigned cycle:1;
unsigned cnt_times:8;
unsigned overflow_flag:1;
TimerId timer_id;

}Timer;

Timer 
management

Input signal 
detection

LIN signal 
extraction

RKE

Anti-theft alarm 
state 

management

Load control
window,wiper,lock,alarm,li

ght

LIN signal 
filling

Clear event

Fig. 3 BCM main loop
software flow chart

30 J. Ma et al.



‘‘Timer_state’’ means if a software timer is in running condition, ‘‘timeout’’ is
overtime application’s timeout threshold, ‘‘duration’’ is the timing of the software
timer since its launch, ‘‘cycle’’ indicates whether the periodic timing, ‘‘cnt_times’’
indicates times of multiple timing when not a periodic timing, ‘‘overflow_flag’’
indicate whether application timeout occurs, ‘‘timer_id’’ is used to identify a
software timer in the software timer array. Thus, the member variable describes all
the ‘‘timing features’’ and provides a good read-write interface.

In function TimerTick of main loop, manage multiple software timers in order.
The software timer only runs when tick occurs under the circumstances of their
own status as RUNNING, its ‘‘duration’’ accumulate with the tick, when ‘‘dura-
tion’’ matches its timeout value, set overflow_flag, and then determine whether it is
a cycle timer. If it is a cycle timer, restart the timer and clear the ‘‘duration’’, if not,
determine whether multiple timing, to determine whether to restart the timer or
stop the timer.

3.2.2 Switch Signal Detection

The switching signal detection is relatively simple in the hardware design, just
current limiting ? filter ? voltage divider, then detect with MCU IO pin. In pro-
gram design, need to determine switch current state and its changes. Because BCM
needs to collect so much switch signal, that in order to program simple with clear
logic, define a structure to unify each switch signal, structure is defined as follows:

typedef struct{

unsigned switch_state:1;
unsigned swon_event:1;
unsigned swoff_event:1;
unsigned cursw:1;
uchar detect_cnt:3;
e_SwId switch_id;

}s_Switch;

In the above structure, ‘‘switch_state’’ defined the current state of the switching
signal, ‘‘swon_event’’ said switch changes from disconnected to connected, and
‘‘swoff_event’’ said switch changes from connected to disconnected, ‘‘cursw’’ and
‘‘detect_cnt’’ used in switch signal software debounce function.

In specific application, define a s_Switch structure array Sw[MAX_SWITCH],
each switch corresponding to a structure variable, addressing with the member
variable ‘‘switch_id’’ in above structure, the ‘‘switch_id’’ is defined as follows with
enumerate type:

typedef enum{

Analysis and Design of Automotive Body Control Module 31



IGNITIONKEY_SWITCH,
IGNITION_SWITCH,
COLLISION_IO_SWITCH,
SPEED_IO_SWITCH,
FRONTDOORKEY_LOCK_SWITCH,
FRONTDOORKEY_UNLOCK_SWITCH,
LEFTFRONT_DOOR_SWITCH,
RIGHTFRONT_DOOR_SWITCH,
….
….

}e_SwId;

So that if the status of the left front door switch is used, directly use Sw[LEFT-
FRONT_DOOR_SWITCH].switch_state, and if you want change of its status,
directly use Sw[LEFTFRONT_DOOR_SWITCH].swon_event and Sw[LEFT-
FRONT_DOOR_SWITCH]. swoff_event. Specific procedures are not discussed
here.

4 Conclusion

According to characteristics and working principle of BCM, analyzed the external
interface and system architecture, designed a common software structure and basic
module that has been applied successfully in the software design of a BCM for one
car model, It has steady performance in the real vehicle test, with practical value
and significance.

32 J. Ma et al.


	3 Analysis and Design of Automotive Body Control Module
	Abstract
	1…Introduction
	2…System Structure
	3…Software Design
	3.1 Software Structure
	3.2 Basic Module Design
	3.2.1 Timer Management
	3.2.2 Switch Signal Detection


	4…Conclusion


