Skip to main content

Distinct but Closely Related Sebacinales form Mycorrhizae with Coexisting Ericaceae and Orchidaceae in a Neotropical Mountain Area

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 33))

Abstract

Sebacinales form mycorrhizae with a variety of plant families including Ericaceae and Orchidaceae. Structurally, these mutual associations are quite distinct, with specific structures largely depending on the individual plant family. Many plants that are associated with Sebacinales occur in the same habitats and it has been questioned whether they share a common pool of mycobionts or are associated with different Sebacinales guilds.

This chapter presents a study of Sebacinales associated with coexisting Ericaceae and Orchidaceae from two different habitats; pristine forest and regenerating landslides in a tropical mountain rain forest in South Ecuador. The structural distinctness of mycorrhizal associations in Ericaceae and Orchidaceae formed by Sebacinales is presented, and evidence that different guilds are associated with both plant families is given. Phylogenetic relationships of these Sebacinales on higher and lower taxonomic levels are illustrated and discussed in an evolutionary context. In addition, this chapter addresses community analyses based on a phylogenetic concept, a promising approach used in the field of ecology and evolution of microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen T, Millar T, Berch S, Berbee M (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 174:864–878

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Auch A, Henz S, Holland B, Göker M (2006) Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics 7:350

    Article  PubMed  Google Scholar 

  • Bauer R, Begerow D, Sampaio JP, Weiß M, Oberwinkler F (2006) The simple-septate basidiomycetes: a synopsis. Mycol Progr 5:41–66

    Article  Google Scholar 

  • Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (2008) Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198. Springer

    Google Scholar 

  • Burgeff H (1909) Die Wurzelpilze der Orchideen. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Bonfante-Fasolo P, Gianinazzi-Pearson V (1979) Ultrastructural aspects of Endomycorrhiza in the Ericaceae I. Naturally infected hair roots of Calluna vulgaris L. Hull. New Phytol 83:739–744

    Article  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martinez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed  Google Scholar 

  • Chu H, Fierer N, Lauber C, Caporaso J, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol. doi:10.1111/j.1462-2920.2010.02277.x

  • Cullings K (1994) Molecular phylogeny of the Monotropoideae (Ericaceae) with a note on the placement of the Pyroloideae. J Evolut Biol 7:501–516

    Article  Google Scholar 

  • Dimitriu PA, Grayston SJ (2010) Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb Ecol 59:563–573

    Article  PubMed  Google Scholar 

  • Doherty M, Tamura M, Costas BA, Ritchie ME, McManus GB, Katz LA (2010) Ciliate diversity and distribution across an environmental and depth gradient in Long Island Sound, USA. Environ Microbiol 12:886–898

    Article  PubMed  CAS  Google Scholar 

  • Duddridge JA, Read D (1982) An ultrastructural analysis of the development of mycorrhizas in Monotropa hypopitys L. New Phytol 92:203–214

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gargas A, Taylor JW (1992) Polymerase Chain Reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia 84:589–592

    Article  CAS  Google Scholar 

  • Glen M, Tommercup IC, Bougher NL, O’Brien PA (2002) Are Sebacinaceae common and widespread ectomycorrthizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247

    Article  PubMed  CAS  Google Scholar 

  • Göker M, Grimm G (2008) General functions to transform associate data to host data, and their use in phylogenetic inference from sequences with intra-individual variability. BMC Evol Biol 8:86

    Article  PubMed  Google Scholar 

  • Göker M, García-Blázquez G, Voglmayr H (2009) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS One 4:e6319

    Article  PubMed  Google Scholar 

  • Grasso C, Lee C (2004) Combining partial order alignment and progressive multiple sequence alignment increases alignment speed and scalability to very large alignment problems. Bioinformatics 20:1546–1556

    Article  PubMed  CAS  Google Scholar 

  • Gregory-Wodzicki K (2000) Uplift history of the Central and Northern Andes: a review. GSA Bulletin 112:1091–1105

    Article  Google Scholar 

  • Gustafsson AL, Verola CF, Antonelli A (2010) Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evol Biol 10:177

    Article  PubMed  Google Scholar 

  • Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  PubMed  CAS  Google Scholar 

  • Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (≡ Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27

    Article  Google Scholar 

  • Hibbett D, Matheny P (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7:13

    Article  PubMed  Google Scholar 

  • Holland B, Huber K, Dress A, Moulton V (2002) ∂ Plots: a tool for analyzing phylogenetic distance data. Mol Biol Evol 19:2051

    Article  PubMed  CAS  Google Scholar 

  • Hopple J, Vilgalys R (1994) Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:96–107

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Iotti M, Zambonelli A (2006) A quick and precise technique for identifying ectomycorrhizas by PCR. Mycol Res 110:60–65

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175

    Article  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Kottke I, Beiter A, Weiß M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Kottke I, Haug I, Setaro S, Suárez J, Weiß M, Preussing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    Article  CAS  Google Scholar 

  • Kottke I, Suárez JP (2009) Mutualistic, root-inhabiting fungi of orchids – identification and functional types. In: Pridgeon AM, Suárez JP (eds) Proceedings of the Second Scientific Conference on Andean Orchids. Universidad Técnica Particular de Loja, Loja, Ecuador, pp 84–99. ISBN 978-9942-00-502-1

    Google Scholar 

  • Kottke I, Suárez J, Herrera P, Cruz D, Bauer R, Haug I, Garnica S (2010) Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc R Soc B 277:1289–1298

    Article  PubMed  Google Scholar 

  • Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423

    Article  Google Scholar 

  • Kron KA, Luteyn JL (2005) Origins and biogeographic patterns in Ericaceae: new insights from recent phylogenetic analyses. Biol Skr 55:479–500

    Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science B. V, Amsterdam

    Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  • Luteyn JL (1996) Ericaceae. In: Flora of Ecuador, Vol. 54. Department of Systematic Botany, University of Göteborg, Stockholm, Sweden, pp 1–404

    Google Scholar 

  • Luteyn JL (2002) Diversity, Adaptation, and Endemism in Neotropical Ericaceae: Biogeographical Patterns in the Vaccinieae. Bot Rev 68:55–87

    Article  Google Scholar 

  • Molinia R, Trappe JM (1982) Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytol 90:495–509

    Article  Google Scholar 

  • Newsham KK, Bridge PB (2010) Sebacinales are associates of the leafy liverwort Lophozia excisa in the southern maritime Antarctic. Mycorrhiza 20:307–313

    Article  PubMed  CAS  Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform 4:193–201

    Google Scholar 

  • Oberwinkler F (1964) Intrahymeniale Heterobasidiomyceten. Fruchtkörperlose Sebacina-Sippen und ihre systematische Stellung. Nova Hedwigia 7:489–498

    Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Washington, DC, USA, pp 225–233

    Google Scholar 

  • Pearson V, Read DJ (1973) The biology of mycorrhiza in the Ericaceae: I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol 72:371–379

    Article  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Pridgeon AM, Solano R, Chase MW (2001) Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Am J Bot 88:2286–2308

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A (2009) FigTree Tree Figure Drawing Tool Version 1.3.1. http://tree.bio.ed.ac.uk/

  • Read DJ (1996) The structure and function of the Ericoid mycorrhizal root. Ann Bot 77:365–374

    Article  CAS  Google Scholar 

  • Schloss P (2008) Evaluating different approaches that test whether microbial communities have the same structure. ISME J 2:265–275

    Article  PubMed  Google Scholar 

  • Selosse MA, Bauer R, Moyersoen B (2002) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195

    Article  CAS  Google Scholar 

  • Selosse MA, Dubois MP, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    Article  PubMed  CAS  Google Scholar 

  • Setaro S, Weiß M, Oberwinkler F, Kottke I (2006a) Sebacinales form ectendomycorrhizae with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365

    Article  PubMed  CAS  Google Scholar 

  • Setaro S, Kottke I, Oberwinkler F (2006b) Anatomy and ultrastructure of mycorrhizal associations of neotropical Ericaceae. Mycol Prog 5:243–254

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Great Britain

    Google Scholar 

  • Stamatakis A (2006) RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid Bootstrap algorithm for the RAxML Web Servers. Syst Biol 57:758

    Article  PubMed  Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) 'Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    Article  PubMed  Google Scholar 

  • Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  PubMed  Google Scholar 

  • Suárez JP, Weiß M, Abele A, Oberwinkler F, Kottke I (2008) Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol Prog 7:75–85

    Article  Google Scholar 

  • Swofford DL (2002) Paup* Phylogenetic Analysis Using Parsimony (* and other Methods). Version 4. Sinauer Associates, Sunerland, Massachusetts

    Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD, Leaky JR, Read DJ (2003) Mycorrhizal specificity and function in Myco-heterotrophic plants. In: Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 375–414

    Google Scholar 

  • Urban A, Weiß M, Bauer R (2003) Ectomycorrhizae involving sebacinoid mycobionts. Mycol Res 107:3–14

    Article  PubMed  Google Scholar 

  • Warcup J, Talbot P (1967) Perfect states of rhizoctonias associated with orchids. New Phytol 66:631–641

    Article  Google Scholar 

  • Warcup J (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  • Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231

    Article  Google Scholar 

  • Weiß M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: PCR protocols: a guide to method and applications, pp 315–322

    Google Scholar 

  • Whitten WM, Williams NH, Chase MW (2000) Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. Am J Bot 87:1842–1856

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Setaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Setaro, S., Suárez, J.P., Herrera, P., Cruz, D., Kottke, I. (2013). Distinct but Closely Related Sebacinales form Mycorrhizae with Coexisting Ericaceae and Orchidaceae in a Neotropical Mountain Area. In: Varma, A., Kost, G., Oelmüller, R. (eds) Piriformospora indica. Soil Biology, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33802-1_5

Download citation

Publish with us

Policies and ethics