Skip to main content

Electronic Surface Properties of Transparent Conducting Oxides: An Ab Initio Study

  • Conference paper
  • First Online:
  • 1582 Accesses

Abstract

We investigate the surface properties of the transparent conducting oxides In2O3, SnO2, and ZnO using density functional theory and quasiparticle calculations based on many-body perturbation theory. We employ the repeated-slab supercell method. An energy alignment of valence and conduction states via the electrostatic potential is applied to determine ionization energies and electron affinities for various surface orientations and terminations of the oxides. In addition, surface energies for different orientations of bixbyite In2O3 are calculated. We find a strong influence of surface orientation and preparation techniques on these fundamental quantities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. S. Ginley and C. G. E. Bright, MRS Bulletin 25, 15 (2000).

    Article  Google Scholar 

  2. G. Thomas, Nature 389, 907 (1997), ISSN 0028–0836.

    Google Scholar 

  3. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).

    Article  Google Scholar 

  4. Z. M. Jarzebski, Phys. Status Solidi A 71, 13 (1982), ISSN 1521–396X.

    Google Scholar 

  5. Y. Li, G. S. Tompa, S. Liang, C. Gorla, Y. Lu, and J. Doyle, in: The 43rd national symposium of the American Vacuum Society, vol. 15, pp. 1063–1068, AVS, Philadelphia, Pennsylvania (USA) (1997).

    Google Scholar 

  6. P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, Dalton Trans. pp. 2995–3002 (2004), ISSN 1477-9226.

    Google Scholar 

  7. R. W. Miles, G. Zoppi, and I. Forbes, Mater. Today 10, 20 (2007), ISSN 1369-7021.

    Google Scholar 

  8. B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, Appl. Phys. Lett. 97, 032116 (2010).

    Article  Google Scholar 

  9. B. Höffling, A. Schleife, C. Rödl, and F. Bechstedt, Phys. Rev. B 85, 035305 (2012).

    Article  Google Scholar 

  10. F. Fuchs and F. Bechstedt, Phys. Rev. B 77, 155107 (2008).

    Article  Google Scholar 

  11. A. R. H. Preston, B. J. Ruck, L. F. J. Piper, A. DeMasi, K. E. Smith, A. Schleife, F. Fuchs, F. Bechstedt, J. Chai, and S. M. Durbin, Phys. Rev. B 78, 155114 (2008).

    Article  Google Scholar 

  12. A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 80, 035112 (2009).

    Article  Google Scholar 

  13. A. Schleife, J. B. Varley, F. Fuchs, C. Rödl, F. Bechstedt, P. Rinke, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 83, 035116 (2011).

    Article  MATH  Google Scholar 

  14. F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109 (2007).

    Article  Google Scholar 

  15. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  16. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  17. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  18. J. P. Perdew, Electronic Structure of Solids ’91, p. 11, Akademie-Verlag, Berlin (1991).

    Google Scholar 

  19. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  20. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  21. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  22. R. Leitsmann and F. Bechstedt, in: W. E. Nagel, D. B. Kröner, and M. M. Resch, eds., High Performance Computing in Science and Engineering ’10, p. 135, Springer, Heidelberg (2010).

    Google Scholar 

  23. ICSD, Inorganics Crystal Structure Database, Fachinformationszentrum Karlsruhe, Germany (2002).

    Google Scholar 

  24. J. Haines and J. M. Léger, Phys. Rev. B 55, 11144 (1997).

    Article  Google Scholar 

  25. F. Bechstedt, F. Fuchs, and G. Kresse, Phys. Status Solidi B 246, 1877 (2009).

    Article  Google Scholar 

  26. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  Google Scholar 

  27. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  28. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  29. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, J. Chem. Phys. 124, 154709 (2006).

    Article  Google Scholar 

  30. M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).

    Article  Google Scholar 

  31. A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, P. H. Jefferson, T. D. Veal, C. F. McConville, L. F. J. Piper, A. DeMasi, K. E. Smith, H. Lösch, R. Goldhahn, C. Cobet, J. Z. niga Pérez, and V. M. noz Sanjosé, J. Korean Phys. Soc. 53, 2811 (2008).

    Google Scholar 

  32. R. Shaltaf, G.-M. Rignanese, X. Gonze, F. Giustino, and A. Pasquarello, Phys. Rev. Lett. 100, 186401 (2008).

    Article  Google Scholar 

  33. Y. Duan, Phys. Rev. B 77, 045332 (2008).

    Article  Google Scholar 

  34. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, R. Schafranek, S. Harvey, and T. Mason, Thin Solid Films 518, 1197 (2009), ISSN 0040-6090.

    Google Scholar 

  35. A. Klein, Appl. Phys. Lett. 77, 2009 (2000).

    Article  Google Scholar 

  36. Y. Gassenbauer and A. Klein, The Journal of Physical Chemistry B 110, 4793 (2006).

    Article  Google Scholar 

  37. P. D. C. King, T. D. Veal, F. Fuchs, C. Y. Wang, D. J. Payne, A. Bourlange, H. Zhang, G. R. Bell, V. Cimalla, O. Ambacher, R. G. Egdell, F. Bechstedt, and C. F. McConville, Phys. Rev. B 79, 205211 (2009).

    Article  Google Scholar 

  38. A. Walsh, J. L. F. Da Silva, S.-H. Wei, C. Körber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008).

    Article  Google Scholar 

  39. K. Jacobi, G. Zwicker, and A. Gutmann, Surf. Sci. 141, 109 (1984), ISSN 0039-6028.

    Google Scholar 

  40. W. Göpel, L. J. Brillson, and C. F. Brucker, J. Vac. Sci. Technol. 17, 894 (1980).

    Article  Google Scholar 

  41. M. A. Butler and D. S. Ginley, J. Electrochem. Soc. 125, 228 (1978).

    Article  Google Scholar 

  42. C. Kilic and A. Zunger, Appl. Phys. Lett. 81, 73 (2002).

    Article  Google Scholar 

  43. W. Mönch, Semiconductor Surfaces and Interfaces, Springer, Berlin (2001).

    Book  MATH  Google Scholar 

  44. C. Körber, P. Agoston, and A. Klein, Sensors and Actuators B 139, 665 (2009), ISSN 0925-4005.

    Google Scholar 

  45. W. Martienssen and H. Warlimont, eds., Springer Handbook of Condensed Matter and Materials Data, Springer, Berlin (2005).

    Google Scholar 

  46. K. Reimann and M. Steube, Solid State Communications 105, 649 (1998), ISSN 0038-1098.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge fruitful discussions with A. Schleife, F. Fuchs, S. Küfner, and J. Furthmüller. The work was financially supported by the EU e-I3 Project ETSF (Grant No. 211956) and the German Federal Government (BMBF Project No. 13N9669). Grants of computer time were given by the Höchstleistungsrechenzentrum Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Höffling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Höffling, B., Bechstedt, F. (2013). Electronic Surface Properties of Transparent Conducting Oxides: An Ab Initio Study. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_11

Download citation

Publish with us

Policies and ethics