Skip to main content

Heat Dissipation in Molecular Junctions: Linking Molecules to Macroscopic Contacts

  • Conference paper
  • First Online:
Architecture and Design of Molecule Logic Gates and Atom Circuits

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1110 Accesses

Abstract

Multiscale and hierarchical methods are becoming a paradigm for the understanding of complex physical phenomena. The concept can be applied to modern nanoelectronic devices where charge and thermal transport phenomena span a broad range of scales from nanometers up to millimeters, sometimes tightly interconnected as in the case of heat dissipation. This demand for the development of new stimulation tools that can cope with microscopic and macroscopic scales coupling different physical models. In this work progresses towards the realization of such integration schemes are presented. At the microscopic scale, the system is described using empirical or density-functional tight-binding descriptions (DFTB). Transport calculations are obtained using nonequilibrium Green’s functions methods that allow for calculations of coherent and incoherent transport and heat dissipation. At larger scales, effective medium equations are represented on finite-element meshes (FEM) to describe electronic and heat-transport phenomena with drift-diffusion or Fourier equations. Atomistic/FEM models are coupled imposing energy/current flux continuity at the boundaries. In this chapter an application of this scheme for the calculation of heat dissipation in molecular junctions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pecchia, A., Di Carlo, A.: Transport in nanoscale and molecular devices. Rep. Prog. Phys. 67, 1497 (2004)

    Article  ADS  Google Scholar 

  2. Auf der Maur, M., Penazzi, G., Romano, G., Sacconi, F., Pecchia, A., Di Carlo, A.: The multiscale paradigm in electronic device simulation. IEEE Trans. Elect. Dev. 58, 1425 (2011)

    Google Scholar 

  3. Auf der Maur, M., Sacconi, F., Penazzi, G., Povolotskyi, M., Romano, G., Pecchia, A., Di Carlo, A.: Coupling atomistic and finite element approaches for the simulation of optoelectronic devices. Opt. Quant. Electron. 41 671-679 (2010)

    Google Scholar 

  4. Ibe, J.P., Bey Jr., P.O., Brandow, S.L., Brizzolara, R.A., Burnham, N.A., Di Lella, D.P., Lee, K.P., Marrian, C.R.K., Colton, R.J.: On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A8, 3570 (1990)

    ADS  Google Scholar 

  5. Setvín, M., Javorský, J., Turčinková, D., Matolínová, I., Sobotík, P., Kocán, P., Ošt’ádal, I.: Ultrasharp tungsten tips, characterization and non destructive cleaning. Ultramicroscopy 113, 152 (2012)

    Google Scholar 

  6. Gunnar Schulze, Elementary processes in single molecule devices: electronic transport and molecular isomerization. Doctoral Thesis (2009)

    Google Scholar 

  7. Elstner, M., Frauenheim, T., McKelvey, J., Seifert, G. (ed.): Special section: DFTB symposium - density functional tight binding: contributions from the American Chemical Society Symposium. J. Phys. Chem. A 111, 5607–5944 (2007)

    Google Scholar 

  8. Pecchia, A., Penazzi, G., Salvucci, L., Di Carlo, A.: Non-equilibrium Green’s functions in density functional tight binding: method and applications. New J. Phys. 10, 065022 (2010)

    Article  Google Scholar 

  9. Pecchia, A., Romano, G., Di Carlo, A.: Theory of heat dissipation in molecular electronics. Phys. Rev. B 75(3), 035401 (2007)

    Article  ADS  Google Scholar 

  10. Gagliardi, A., Romano, G., Pecchia, A., Di Carlo, A.: Simulation of inelastic scattering in molecular junctions: application to inelastic electron tunneling spectroscopy and dissipation effects. J. Comput. Theor. Nanosci. 7, 2512–2526 (2010)

    Article  Google Scholar 

  11. Jaklevic, R.C., Lambe, J.: Molecular vibration spectra by electron tunneling. Phys. Rev. Lett. 17, 1139 (1966)

    Article  ADS  Google Scholar 

  12. Romano, G., Gagliardi, A., Pecchia, A., Di Carlo, A.: Heating and cooling mechanisms in single-molecule junctions. Phys. Rev. B 81, 115438 (2010)

    Article  ADS  Google Scholar 

  13. LĂĽ, X.: Thermal conductivity modeling of copper and tungsten damascene structures. J. Appl. Phys. 105, 094301 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been done in close collaboration with the Optolab group of Prof. Aldo Di Carlo at the University of Rome “Tor Vergata.” The work has been done using the TiberCAD simulation software involving the work of Dr. Matthias Auf der Maur, Dr. Alessio Gagliardi, and Dr. Giuseppe Romano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pecchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pecchia, A. (2013). Heat Dissipation in Molecular Junctions: Linking Molecules to Macroscopic Contacts. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_8

Download citation

Publish with us

Policies and ethics