Skip to main content

Mapping Electron Transport Pathways in Complex Systems

  • Conference paper
  • First Online:
Architecture and Design of Molecule Logic Gates and Atom Circuits

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1103 Accesses

Abstract

As system complexity increases, in either biological or synthetic molecules, an understanding of structure-function relationships makes it possible to identify the essential functional units controlling physical properties from what may be a vast sea of spectator components. Until recently, the range of theoretical tools that have been implemented for elucidating structure-function relationships in molecular electron transport have been limited, and consequently, the ability to build chemical intuition for the behaviour of complex systems has also been limited. Here we present our efforts developing a local description of molecular electron transport, which has allowed us to map the interactions in a molecule that mediate the tunnelling current in a range of chemically interesting molecules. With this description of the local transport, we can understand the behaviour of a complex, fluctuating system as a force is applied that induces conformational change. We can isolate the interactions in the molecule responsible for high or low currents and can use this information to refine the system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, D.Q., Solomon, G.C., Van Duyne, R.P., Ratner, M.A.: Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J. Am. Chem. Soc. 130(51), 17,309–17,319 (2008)

    Article  Google Scholar 

  2. Bilic, A., Reimers, J.R., Hush, N.S.: The structure, energetics, and nature of the chemical bonding of phenylthiol adsorbed on the au(111) surface: implications for density-functional calculations of molecular-electronic conduction. J. Chem. Phys. 122(9), 094, 708–15 (2005)

    Google Scholar 

  3. Elstner, M., Porezag, D., Jugnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998)

    Article  ADS  Google Scholar 

  4. Franco, I., George, C.B., Solomon, G.C., Schatz, G.C., Ratner, M.A.: Mechanically activated molecular switch through single-molecule pulling. J. Am. Chem. Soc. 133(7), 2242–2249 (2011)

    Article  Google Scholar 

  5. Pecchia, A., Di Carlo, A.: Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67(8), 1497–1561 (2004). 0034–4885

    Google Scholar 

  6. Porezag, D., Frauenheim, T., Kohler, T., Seifert, G., Kaschner, R.: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys. Rev. B 51, 12,947–12,957 (1995)

    Google Scholar 

  7. Shao, Y., Molnar, L.F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S.T., Gilbert, A.T.B., Slipchenko, L.V., Levchenko, S.V., O’Neill, D.P., Jr, R.A.D., Lochan, R.C., Wang, T., Beran, G.J.O., Besley, N.A., Herbert, J.M., Lin, C.Y., Voorhis, T.V., Chien, S.H., Sodt, A., Steele, R.P., Rassolov, V.A., Maslen, P.E., Korambath, P.P., Adamson, R.D., Austin, B., Baker, J., Byrd, E.F.C., Dachsel, H., Doerksen, R.J., Dreuw, A., Dunietz, B.D., Dutoi, A.D., Furlani, T.R., Gwaltney, S.R., Heyden, A., Hirata, S., Hsu, C.P., Kedziora, G., Khalliulin, R.Z., Klunzinger, P., Lee, A.M., Lee, M.S., Liang, W., Lotan, I., Nair, N., Peters, B., Proynov, E.I., Pieniazek, P.A., Rhee, Y.M., Ritchie, J., Rosta, E., Sherrill, C.D., Simmonett, A.C., Subotnik, J.E., Iii, H.L.W., Zhang, W., Bell, A.T., Chakraborty, A.K.: Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8(27), 3172–3191 (2006). 10.1039/b517914a

    Google Scholar 

  8. Solomon, G.C., Bergfield, J.P., Stafford, C.A., Ratner, M.A.: When small terms matter: coupled interference features in the transport properties of cross-conjugated molecules. Beilstein J. Nanotechnol. 2, 862–871 (2011)

    Article  Google Scholar 

  9. Solomon, G.C., Gagliardi, A., Pecchia, A., Frauenheim, T., Di Carlo, A., Reimers, J.R., Hush, N.S.: The symmetry of single-molecule conduction. J. Chem. Phys. 125(18), 184, 702–5 (2006)

    Google Scholar 

  10. Solomon, G.C., Herrmann, C., Hansen, T., Mujica, V., Ratner, M.A.: Exploring local currents in molecular junctions. Nat. Chem. 2(3), 223–228 (2010). 1755–4330 10.1038/nchem.546 10.1038/nchem.546

    Google Scholar 

  11. Solomon, G.C., Herrmann, C., Vura-Weis, J., Wasielewski, M.R., Ratner, M.A.: The chameleonic nature of electron transport through –stacked systems. J. Am. Chem. Soc. 132(23), 7887–7889 (2010)

    Article  Google Scholar 

  12. Todorov, T.N.: Tight-binding simulation of current-carrying nanostructures. J. Phys. Condens. Matter 14(11), 3049–3084 (2002). 0953–8984

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant agreement n\(\circ \) 258806 and The Danish Council for Independent Research | Natural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma C. Solomon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solomon, G.C. (2013). Mapping Electron Transport Pathways in Complex Systems. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_4

Download citation

Publish with us

Policies and ethics