Skip to main content

Dynamical Systems

  • Chapter
  • First Online:
  • 1266 Accesses

Abstract

In this chapter, we recall, though well-known examples, the main concepts and definitions concerning dynamical systems. We introduce the classic notion of state-space representation of discrete-time and of continuous-time dynamical systems, and we discuss how one can move from the latter to the former. This chapter also briefly presents cellular automata, a family of discrete-time dynamical systems than can be used to model computations. Using the dimensions presented in Chap. 3 as reference, the chapter then describes the main features of the representation of time in dynamical systems.

This is a preview of subscription content, log in via an institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. 1.

    The attribute “dynamical” comes from the Greek word for “force” (\(\delta \upsilon \nu \alpha \mu \mathrm{o}\sigma \)), which is the source of system evolution in mechanical phenomena.

  2. 2.

    For simplicity, we assume that the value of constant 1 ∕ (RC) does not impact the precision of the calculation.

References

  1. Arnold, V.: Catastrophe Theory. Springer, Berlin (2004)

    Google Scholar 

  2. Benacerraf, P., Putnam, H. (eds.): Philosophy of Mathematics: Selected Readings. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  3. Bittanti, S., Colaneri, P.: Periodic Systems: Filtering and Control. Springer, London (2009)

    Google Scholar 

  4. Boyer, C.B.: A History of Mathematics. Wiley, New York (1991). 2nd edn, revised by Uta C. Merzbach

    Google Scholar 

  5. Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks Cole, Pacific Grove (2010)

    Google Scholar 

  6. Byrne, C.L.: Signal Processing: A Mathematical Approach. A. K. Peters, Wellesley (2005)

    Google Scholar 

  7. Chong, P.K.: The life and work of Leonardo of Pisa. Menemui Mat. 4(2), 60–66 (1982)

    Google Scholar 

  8. Chua, L.O., Desoer, C.A., Kuh, E.S.: Linear and Nonlinear Circuits. McGraw-Hill, New York (1987)

    Google Scholar 

  9. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)

    Google Scholar 

  10. Ernest, P.: New angles on old rules. Times Higher Educational Supplement. http://people.exeter.ac.uk/PErnest/pome12/article2.htm (1996). Accessed 6 Sept 1996

  11. Hamming, R.: Numerical Methods for Scientists and Engineers. Dover, New York (1987)

    Google Scholar 

  12. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (2001)

    Google Scholar 

  13. Horadam, A.F.: Eight hundred years young. Aust. Math. Teach. 31, 123–134 (1975)

    Google Scholar 

  14. Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River (1995)

    Google Scholar 

  15. Lathi, B.P.: Signal Processing and Linear Systems. Oxford University Press, Oxford (2000)

    Google Scholar 

  16. Leader, J.J.: Numerical Analysis and Scientific Computation. Addison-Wesley, Boston (2004)

    Google Scholar 

  17. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  18. Modelica and the Modelica Association. http://www.modelica.org

  19. Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64(20), 2354–2357 (1990)

    Google Scholar 

  20. Proakis, J.G., Manolakis, D.K.: Digital Signal Processing, 4th edn. Prentice Hall, Upper Saddle River (2006)

    Google Scholar 

  21. Schiff, J.L.: Cellular Automata: A Discrete View of the World. Wiley, Hoboken (2008)

    Google Scholar 

  22. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Chichester (2005)

    Google Scholar 

  23. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Cambridge (2001)

    Google Scholar 

  24. von Neumann, J.: The general and logical theory of automata. In: Jeffress L.A. (ed.) Cerebral Mechanisms in Behavior—The Hixon Symposium, pp. 1–31. Wiley, New York (1951)

    Google Scholar 

  25. von Neumann, J.: The Theory of Self-reproducing Automata. University of Illinois, Urbana (1966)

    Google Scholar 

  26. Wolfram, S.: Cellular Automata and Complexity. Perseus Books Group, Oxford (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M. (2012). Dynamical Systems. In: Modeling Time in Computing. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32332-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32332-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32331-7

  • Online ISBN: 978-3-642-32332-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics