Skip to main content

A New Procedure for the Determination of the Main Technology Parameters of Rolling Mills

  • Chapter
  • First Online:
Design and Analysis of Materials and Engineering Structures

Abstract

Nowadays, approximately 90–95 % of metals are processed by cold rolling. There has been a substantial increase in demand for utility properties as well as for reducing production costs. These objectives cannot be achieved without a high degree of automation, control and monitoring throughout the manufacturing process. These qualitative changes require rather deep and comprehensive theoretical and metallurgical–technological knowledge of operators in the field of design, research and production of rolled steel sheets, which is needed for further development in rolling steel. A continuous quality control of material and surface during the rolling process is a part of these tasks and is associated with providing the full automation of rolling mills. Starting from theoretical foundations, we have developed a new procedure for the determination of main technology parameters of a rolling mill. The main difference between our proposal and current methods of calculation is as follows. Our proposal is based on the knowledge of deformation properties of materials and continuous processes of stress-deformation state and on the knowledge of reductions in different stages of rolling. Current procedures are on the contrary based on static calculations using the geometry of the system—working roll and instantaneous sheet metal thickness in a gap between the rollers. In doing so, the calculations almost ignore the real stress—deformation properties of rolled metal sheets, optimal transmission rate of deformation in the material at the given speeds of rollers and the given main rolling force. We are concerned with the optimum balanced system: main rolling force—rolling speeds, or transmission rate of deformation in the material. This procedure allows us to achieve a significant increase in operational performance as well as in rolling process quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herman, J.C.: Impact of new rolling and cooling technologies on thermomechanically processed steels. Ironmak. Steelmak. 28(2), 159–163 (2001)

    Google Scholar 

  2. Kenmochi, K., Yarita, I., Abe, H., Fukuhara, A., Komatu, T., Kaito, H.: Effect of micro-defects on the surface brightness of cold-rolled stainless-steel strip. J. Mater. Process. Technol. 69, 106–111 (1997)

    Article  Google Scholar 

  3. Mišičko, R., Kvačkaj, T., Vlado, M., Gulová, L., Lupták, M., Bidulská, J.: Defects simulation of rolling strip. Mater. Eng. 16(3), 7–12 (2009)

    Google Scholar 

  4. Valiev, R.Z., Estrin, Y., Horita, Z.: Producing bulk ultrafine grained materials by severe plastic deformation. J. Minerals Metals Mater. Soc. 58(4), 33–39 (2006)

    Google Scholar 

  5. Zrník, J., Dobatkin, S.V., Mamuzič, I.: Processing of metals by severe plastic deformation (SPD)—structure and mechanical properties respond. Metalurgija 47(3), 211–216 (2008)

    Google Scholar 

  6. Ginzburg, V.B.: Flat-Rolled Steel Processes. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  7. Pittner, J., Simaan, M.A.: Tandem Cold Metal Rolling Mill Control. Springer, London (2011)

    Book  Google Scholar 

  8. Lenard, J.G.: Primer on Flat Rolling. Elsevier, London (2007)

    Google Scholar 

Download references

Acknowledgments

The contribution was supported by the projects RMTVC No. CZ.1.05/2.1.00/01.0040. Thanks also belong to the Moravian-Silesian Region project RRC/04/2010/36 for financial support and IT4 Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Valíček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valíček, J. et al. (2013). A New Procedure for the Determination of the Main Technology Parameters of Rolling Mills. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Design and Analysis of Materials and Engineering Structures. Advanced Structured Materials, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32295-2_2

Download citation

Publish with us

Policies and ethics