Skip to main content

Connectivity and Depth First Search

  • Chapter
  • 8020 Accesses

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 5))

Abstract

In previous chapters, we encountered the notions of connectivity, strong connectivity, and k-connectivity. In particular, we already know an efficient method for determining the connected components of a graph: breadth first search (BFS). In the present chapter, we mainly treat algorithmic questions concerning k-connectivity and strong connectivity. To this end, we introduce a further important strategy for searching graphs and digraphs (besides BFS), namely depth first search—which may also be thought of as a strategy for traversing a maze. In addition, we present various theoretical results, such as characterizations of 2-connected graphs and of edge connectivity.

How beautiful the world would be if there were a rule for getting around in labyrinths.

Umberto Eco

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the time being, we leave it to the reader to prove this claim; alternatively, see Theorem 8.3.1.

  2. 2.

    Recall that a stack is a list where elements are appended at the end and removed at the end as well (last in—first out), in contrast to a queue where elements are appended at the end, but removed at the beginning (first in—first out). For a more detailed discussion of these data structures (as well as for possible implementations), we refer to [AhoHU74, AhoHU83] or to [CorLRS09].

  3. 3.

    This means replacing each edge uv of G by vu.

  4. 4.

    Some authors use the terms line connectivity and line connected instead.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison Wesley, Reading (1983)

    MATH  Google Scholar 

  3. Bienstock, D., Brickell, E.F., Monma, C.N.: On the structure of minimum-weight k-connected spanning networks. SIAM J. Discrete Math. 3, 320–329 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  5. Chartrand, G.: A graph-theoretic approach to communication problems. SIAM J. Appl. Math. 14, 778–781 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chartrand, G., Harary, F.: Graphs with described connectivities. In: Erdős, P., Katona, G. (eds.) Theory of Graphs, pp. 61–63. Academic Press, New York (1968)

    Google Scholar 

  7. Chvátal, V., Erdős, P.: A note on Hamiltonian circuits. Discrete Math. 2, 111–113 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  9. Edmonds, J.: Edge disjoint branchings. In: Rustin, R. (ed.) Combinatorial Algorithms, pp. 91–96. Algorithmics Press, New York (1973)

    Google Scholar 

  10. Even, S.: Algorithm for determining whether the connectivity of a graph is at least k. SIAM J. Comput. 6, 393–396 (1977)

    MathSciNet  Google Scholar 

  11. Even, S.: Graph Algorithms. Computer Science Press, Rockville (1979)

    MATH  Google Scholar 

  12. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J. Comput. 4, 507–512 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Even, S., Garey, M.R., Tarjan, R.E.: A note on connectivity and circuits in directed graphs. Unpublished manuscript (1977)

    Google Scholar 

  14. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete Math. 5, 25–53 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. Comb. Theory, Ser. B 65, 73–110 (1995)

    Article  MATH  Google Scholar 

  16. Galil, Z.: Finding the vertex connectivity of graphs. SIAM J. Comput. 9, 197–199 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallai, T.: Elementare Relationen bezüglich der Glieder und trennenden Punkte eines Graphen. Magy. Tud. Akad. Mat. Kut. Intéz. K"ozl. 9, 235–236 (1964)

    MathSciNet  MATH  Google Scholar 

  18. Harary, F.: The maximum connectivity of a graph. Proc. Natl. Acad. Sci. USA 48, 1142–1146 (1962)

    Article  MATH  Google Scholar 

  19. Hopcroft, J., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2, 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  20. Linial, N., Lovász, L., Widgerson, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica 8, 91–102 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lucas, E.: Récréations Mathématiques. Paris (1882)

    Google Scholar 

  22. Mansour, Y., Schieber, B.: Finding the edge connectivity of directed graphs. J. Algorithms 10, 76–85 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matula, D.W.: Determining edge connectivity in O(mn). In: Proc. 28th Symp. on Foundations of Computer Science, pp. 249–251 (1987)

    Google Scholar 

  24. Ramachandra Rao, A.: An extremal problem in graph theory. Isr. J. Math. 6, 261–266 (1968)

    Article  MathSciNet  Google Scholar 

  25. Schnorr, C.P.: Bottlenecks and edge connectivity in unsymmetrical networks. SIAM J. Comput. 8, 265–274 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tarry, G.: Le problème des labyrinthes. Nouv. Ann. Math. 14, 187 (1895)

    Google Scholar 

  28. Végh, L.: Augmenting undirected node-connectivity by one. SIAM J. Discrete Math. 25, 695–718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Comput. Syst. Sci. 35, 96–144 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)

    Article  MathSciNet  Google Scholar 

  31. Whitney, H.: Non-separable and planar graphs. Trans. Am. Math. Soc. 54, 339–362 (1932)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungnickel, D. (2013). Connectivity and Depth First Search. In: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32278-5_8

Download citation

Publish with us

Policies and ethics