Skip to main content

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 5))

  • 8070 Accesses

Abstract

In this book, we have concentrated on those optimization problems which allow efficient (that is, polynomial time) algorithms. In contrast, the final chapter deals with an archetypical NP-complete problem: the travelling salesman problem already introduced in Chap. 1. It is one of the most famous and important problems in all of combinatorial optimization—with manyfold applications in such diverse areas as logistics, genetics, telecommunications, and neuroscience—and has been the subject of extensive study for about 60 years. We saw in Chap. 2 that no efficient algorithms are known for NP-complete problems, and that it is actually quite likely that no such algorithms can exist. Now we address the question of how such hard problems—which regularly occur in practical applications—might be approached: one uses, for instance, approximation techniques, heuristics, relaxations, post-optimization, local search, and complete enumeration. We shall explain these methods only for the TSP, but they are typical for dealing with hard problems in general. We will also brie y explain the idea of a further extremely important approach—via polyhedra—to solving hard problems and present a list of notable large scale TSPs which were solved to optimality.

Which way are you goin’…

Jim Croce

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our discussion refers to the TSP, but applies to minimization problems in general. Of course, with appropriate adjustments, it can also be transferred to maximization problems.

  2. 2.

    In practice, this is done by using a sufficiently large number M instead of ∞: for instance, M=max{w ij :i,j=1,…,n}.

  3. 3.

    In the literature, it is quite common to assume s=1. Moreover, the term 1-tree is often used for the general concept (no matter which special vertex is selected), even though this is rather misleading.

  4. 4.

    We might solve MsT for each choice of s to obtain the best possible bound, but this is probably not worth the extra effort provided that we select s judiciously.

  5. 5.

    The polytope P is the convex hull of the incidence vectors of tours: its vertices are 0-1-vectors. Leaving out the restriction x ij ∈{0,1}, the inequalities in (15.1) and (15.2) define a polytope P′ containing P, which will (in general) have additional rational vertices. Thus all vertices of P′ which are not 0-1-vectors have to be cut off by further appropriate inequalities.

  6. 6.

    Note that this is the one point in the proof where we make use of the triangle inequality.

  7. 7.

    Of course we do not know such an optimal tour explicitly, but that does not matter for our argument.

  8. 8.

    Some other important problems are even more difficult to handle than the ΔTSP. For example, the existence of a polynomial ε-approximative algorithm for determining a maximal clique (for any particular choice of ε>0) already implies P=NP; see [AroSa02]. For even stronger results in this direction, we refer to [Zuc96]. All these results use an interesting concept from theoretical computer science: so-called transparent proofs; see, for example, [BabFL91] and [BabFLS91].

  9. 9.

    Obviously, k-opt needs O(n k) steps for each iteration of the while-loop; nothing can be said about the number of iterations required.

  10. 10.

    Of course, our previous experiences suggest that this idea will not be very helpful for the TSP; indeed, the present section will provide more bad news on the TSP in more than one respect. To use a phrase taken from [LawLRS85, p. 76]: The outlook continues to be bleak.

  11. 11.

    It can be shown that not even the huge neighborhood N n−3 of Sect. 15.6 is exact.

  12. 12.

    This fact is not all that surprising, as HaBe is the shortest edge incident with Be, while all the other edges are considerably longer.

  13. 13.

    Of course, it will usually be necessary to abort this process at some point: there is no guarantee at all that it has to terminate.

References

  1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley, New York (1997)

    MATH  Google Scholar 

  2. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (A preliminary report). DIMACS Technical Report 95-05 (1995)

    Google Scholar 

  3. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Doc. Math. III, 645–656 (1998) (Extra Volume ICM 1998)

    Google Scholar 

  4. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not conform to the template paradigm. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimization, pp. 261–304. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems. Math. Program. 97B, 91–153 (2003)

    Google Scholar 

  6. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde (2004). Available at www.tsp.gatech.edu

  7. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  8. Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. J. Assoc. Comput. Mach. 45, 753–782 (1998)

    Article  MATH  Google Scholar 

  9. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. In: Proc. 33rd IEEE Symp. on Foundations of Computer Science, pp. 2–13 (1992)

    Google Scholar 

  10. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proc. 33th IEEE Symp. on Foundations of Computer Science, pp. 14–23 (1992)

    Google Scholar 

  11. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proc. 23rd ACM Symp. on Theory of Computing, pp. 21–31 (1991)

    Google Scholar 

  12. Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Balas, E., Fischetti, M.: A lifting procedure for the asymmetric traveling salesman polytope and a large new class of facets. Math. Program. 58, 325–352 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balas, E., Xue, J.: Minimum weighted coloring of triangulated graphs, with application to maximum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput. 20, 209–221 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15, 1054–1068 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bentley, J.L.: Experiments on traveling salesman heuristics. In: Proc. First SIAM Symp. on Discr. Algorithms, pp. 91–99 (1990)

    Google Scholar 

  17. Bland, R.G., Shallcross, D.F.: Large traveling salesman problems arising from experiments in X-ray crystallography: A preliminary report on computation. Oper. Res. Lett. 8, 125–128 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: On the approximability of TSP on local modifications of optimally solved instances. Algorithmic Oper. Res. 2, 83–93 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Böckenhauer, H.-J., Hromkovič, J., Sprock, A.: Knowing all optimal solutions does not help for TSP reoptimization. In: Springer Lecture Notes in Computer Science, vol. 6610, pp. 7–15 (2011)

    Google Scholar 

  20. Carpaneto, G., Fischetti, M., Toth, P.: New lower bounds for the symmetric travelling salesman problem. Math. Program. 45, 233–254 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Charikar, M., Hoemans, M.X., Karloff, H.: On the integrality ratio for the asymmetric traveling salesman problem. Math. Oper. Res. 31, 245–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Report 388, Grad. School of Ind. Admin., Carnegie-Mellon University (1976)

    Google Scholar 

  23. Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2011)

    Google Scholar 

  24. Cornuejols, G., Nemhauser, G.L.: Tight bounds for Christofides’ traveling salesman heuristic. Math. Program. 14, 116–121 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6, 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  26. Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman problems to optimality. Manag. Sci. 26, 495–509 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954)

    Article  MathSciNet  Google Scholar 

  28. Deĭneko, V.G., Woeginger, G.: A study of exponential neighborhoods for the travelling salesman problem and for the quadratic assignment problem. Math. Program. 87, 519–542 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dueck, G.: New optimization heuristics: the great deluge algorithm and record-to-record travel. J. Comput. Phys. 104, 86–92 (1993)

    Article  MATH  Google Scholar 

  30. Dueck, G., Scheuer, T.: Threshold accepting: A general purpose optimization algorithm appearing superior to simulating annealing. J. Comput. Phys. 90, 161–175 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fiechter, C.-N.: A parallel tabu search algorithm for large traveling salesman problems. Discrete Appl. Math. 51, 243–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fisher, M.L.: The Langrangian method for solving integer programming problems. Manag. Sci. 27, 1–18 (1981)

    Article  MATH  Google Scholar 

  33. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Stud. 12, 61–77 (1980)

    Article  MATH  Google Scholar 

  35. Grötschel, M.: Developments in combinatorial optimization. In: Jäger, W., Moser, J., Remmert, R. (eds.) Perspectives in Mathematics: Anniversary of Oberwolfach 1984, pp. 249–294. Birkhäuser, Basel (1984)

    Google Scholar 

  36. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991)

    Article  MATH  Google Scholar 

  37. Grötschel, M., Jünger, M., Reinelt, G.: Optimal control of plotting and drilling machines: a case study. ZOR, Z. Oper.-Res. 35, 61–84 (1991)

    MATH  Google Scholar 

  38. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  39. Gutin, G., Punnen, A.: The Traveling Salesman Problem and Its Variations. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  40. Hall, M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986)

    MATH  Google Scholar 

  41. Held, M., Karp, R.: The travelling salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. Held, M., Karp, R.: The travelling salesman problem and minimum spanning trees II. Math. Program. 1, 6–25 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  43. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  44. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York (1985)

    Google Scholar 

  46. Leclerc, M., Rendl, F.: Constrained spanning trees and the travelling salesman problem. Eur. J. Oper. Res. 39, 96–102 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lenstra, J.K., Rinnooy Kan, A.H.G.: Some simple applications of the travelling salesman problem. Oper. Res. Q. 26, 717–733 (1975)

    Article  MATH  Google Scholar 

  48. Lin, S.: Computer solutions of the travelling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)

    MATH  Google Scholar 

  49. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling salesman problem. Oper. Res. 31, 498–516 (1973)

    Article  MathSciNet  Google Scholar 

  50. Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the travelling salesman problem. Oper. Res. 11, 972–989 (1963)

    Article  MATH  Google Scholar 

  51. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5, 299–326 (1991)

    MathSciNet  MATH  Google Scholar 

  52. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992)

    MATH  Google Scholar 

  53. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer, Berlin (2007)

    MATH  Google Scholar 

  54. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for Euclidean TSP, k-MST, and related problems. SIAM J. Comput. 28, 1298–1309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mühlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in combinatorial optimization. Parallel Comput. 7, 65–85 (1988)

    Article  MATH  Google Scholar 

  56. Naddef, D.: Handles and teeth in the symmetric travelling salesman polytope. In: Cook, W., Seymour, P.D. (eds.) Polyhedral Combinatorics, pp. 61–74. Am. Math. Soc., Providence (1990)

    Google Scholar 

  57. Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. Ph.D. thesis, Northwestern University, Evanston, IL (1976)

    Google Scholar 

  58. Orlin, J.B., Sharma, D.: Extended neighborhood: definition and characterization. Math. Program. 101, 537–559 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem: A computational study. Math. Program. Stud. 12, 78–107 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  60. Padberg, M.W., Rao, M.R.: The travelling salesman problem and a class of polyhedra of diameter two. Math. Program. 7, 32–45 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  61. Padberg, M.W., Rinaldi, G.: Optimization of a 532-city symmetric travelling salesman problem. Oper. Res. Lett. 6, 1–7 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  62. Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale travelling salesman problems. SIAM Rev. 33, 60–100 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  63. Padberg, M.W., Sung, T.-Y.: An analytical comparison of different formulations of the travelling salesman problem. Math. Program. 52, 315–357 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  64. Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope is NP-complete. Math. Program. 14, 312–324 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  65. Papadimitriou, C.H.: The complexity of the Lin-Kernighan heuristic for the traveling salesman problem. SIAM J. Comp. 21, 450–465 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  66. Papadimitriou, C.H., Steiglitz, K.: On the complexity of local search for the travelling salesman problem. SIAM J. Comput. 6, 76–83 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  67. Papadimitriou, C.H., Steiglitz, K.: Some examples of difficult travelling salesman problems. Oper. Res. 26, 434–443 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  68. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  69. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26, 101–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances 1 and 2. Math. Oper. Res. 18, 1–11 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  71. Pulleyblank, W.R.: Polyhedral combinatorics. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming: The State of the Art, pp. 312–345. Springer, Berlin (1983)

    Chapter  Google Scholar 

  72. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, Berlin (1994)

    Google Scholar 

  73. Rosenkrantz, D.J., Stearns, E.A., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6, 563–581 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sahni, S., Gonzales, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23, 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  75. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin (2003) (in 3 volumes)

    MATH  Google Scholar 

  76. Shapiro, J.F.: A survey of Langrangian techniques for discrete optimization. Ann. Discrete Math. 5, 113–138 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  77. Shmoys, D.B., Williamson, D.P.: Analyzing the Held-Karp-TSP bound: A monotonicity property with application. Inf. Process. Lett. 35, 281–285 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  78. Shor, N.Z.: Minimization Methods for Non-Differentiable Functions. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  79. Syslo, M.M., Deo, N., Kowalik, J.S.: Discrete Optimization Algorithms. Prentice Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  80. Volgenant, T., Jonker, R.: A branch and bound algorithm for the symmetric travelling salesman problem based on the 1-tree relaxation. Eur. J. Oper. Res. 9, 83–89 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  81. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Springer Lect. Notes Comput. Sci., vol. 2570, pp. 185–207 (2003)

    Google Scholar 

  82. Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl. Math. 156, 397–405 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math. Program. Stud. 13, 121–134 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  84. Zuckerman, D.: On unapproximable versions of NP-complete problems. SIAM J. Comput. 25, 1293–1304 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungnickel, D. (2013). A Hard Problem: The TSP. In: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32278-5_15

Download citation

Publish with us

Policies and ethics