Skip to main content

Allopolyploid Speciation in Action: The Origins and Evolution of Senecio cambrensis

  • Chapter
  • First Online:
Polyploidy and Genome Evolution

Abstract

Senecio cambrensis is one of a few allopolyploid plant species known to have originated in the recent past and, therefore, provides excellent material for analysing allopolyploid speciation. This allohexaploid species originated in the UK within the last 100 years following hybridization between diploid S. squalidus and tetraploid S. vulgaris. In this chapter, we first describe the events leading up to hybridization between these two species, focusing mainly on the origin and spread of S. squalidus in the UK. We then consider alternative pathways by which S. cambrensis might have originated and conclude that current evidence suggests an origin via formation of the triploid hybrid (S. x baxteri) followed by chromosome doubling. We next review our investigations into levels of genetic diversity and also changes to gene expression and the possible causes of this (epigenetic effects) during the origin of S. cambrensis. High levels of genetic diversity, assessed by surveys of allozyme and AFLP variation, have been recorded in S. cambrensis, and it is likely that intergenomic recombination was an important generator of this diversity. Our studies of ‘resynthesized’ S. cambrensis have shown that the initial genome merger (hybridization) producing S. x baxteri generates genome-wide, non-additive alterations to parental patterns of gene expression and DNA methylation, with genome duplication resulting in a secondary burst of both transcriptional and epigenetic modification. In synthetic allohexaploid lines of S. cambrensis phenotypic changes become apparent from the second to fifth generations, possibly as a consequence of recombination or epigenetic effects; these include changes in ray flower form and emergence of self-incompatible individuals. We conclude by considering the future of S. cambrensis from the standpoint of it being a model species for further study of allopolyploid speciation, and second its long-term success in the wild. Ongoing work to produce a draft reference genome for S. squalidus will underpin future research in S. cambrensis, enabling a more thorough survey of changes to DNA methylation, small RNA activity and promoter binding in the hybrids, as well as comparison with the related allotetraploid S. eboracensis to determine the effects of genome dosage. The future of the species in the wild is currently uncertain. The population in Edinburgh that represented a separate origin of the species in the wild during the 1970s is now extinct, and there has been a marked decline in the number of populations and individuals of the species in its heartland, North Wales, since the 1980s. An analysis of how its ecology compares with those of its parents is lacking. However, it appears to share the same habitats in the wild with its parents, which might have contributed to its decline. Although S. cambrensis may become extinct in the wild in the near future, the potential will remain for it to originate again in the UK providing that conditions prevail for its parents to hybridize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Forbes DG (1993) Outcrossing rate and self-incompatibility in the colonizing species Senecio squalidus L. Heredity 71:155–159

    Article  Google Scholar 

  • Abbott RJ, Forbes DG (2002) Extinction of the edinburgh lineage of the allopolyploid neospecies, Senecio cambrensis Rosser (Asteraceae). Heredity 88:267–269

    Article  PubMed  CAS  Google Scholar 

  • Abbott RJ, Lowe AJ (1996) A review of hybridization and evolution in British Senecio In:Hind DJN, Beentje HJ (eds.) Compositae: systematics. Proceedings of the international compositae conference Kew 1994, Royal Botanic Gardens, Kew, pp 679–689

    Google Scholar 

  • Abbott RJ, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British isles. Biol J Linn Soc 82:467–474

    Article  Google Scholar 

  • Abbott RJ, Ashton PA, Forbes DG (1992) Introgressive origin of the radiate groundsel Senecio vulgaris L. var. hibernicus Syme: Aat-3 evidence. Heredity 68:425–435

    Article  Google Scholar 

  • Abbott RJ, Ingram R, Noltie HJ (1983) Discovery of Senecio cambrensis Rosser in edinburgh. Watsonia 14:407–408

    Google Scholar 

  • Abbott RJ, Ireland HE, Rogers HJ (2007) Population decline despite high genetic diversity in the new allopolyploid species Senecio cambrensis (Asteraceae). Mol Ecol 16:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Abbott RJ, Brennan AC, James JK, Forbes DG, Hegarty MJ, Hiscock SJ (2009) Recent hybrid origin and invasion of the British isles by a self-incompatible species, Oxford ragwort (Senecio squalidus L., Asteraceae). Biol Invasions 11:1145–1158

    Article  Google Scholar 

  • Abbott RJ, Hegarty MJ, Hiscock SJ, Brennan AC (2010) Homoploid hybrid speciation in action. Taxon 59:1375–1386

    Google Scholar 

  • Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  PubMed  CAS  Google Scholar 

  • Ashton PA, Abbott RJ (1992) Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis Rosser (Compositae). Heredity 68:25–32

    Article  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker WA, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376

    Article  PubMed  Google Scholar 

  • Baker HG (1967) Support for Baker’s’ Law—as a rule. Evolution 21:853–856

    Article  Google Scholar 

  • Benoit PM, Crisp PC, Jones BMG (1975) Senecio L. In: Stace CA (ed) Hybridization and the flora of the British isles. Academic, London, pp 404–410

    Google Scholar 

  • Brennan AC, Hiscock SJ (2010) Expression and inheritance of sporophytic self-incompatibility in synthetic allohexaploid Senecio cambrensis (Asteraceae). New Phytol 186:251–261

    Article  PubMed  CAS  Google Scholar 

  • Brennan ACE, Harris SA, Tabah DA, Hiscock SJ (2002) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) I: S allele diversity in a natural population. Heredity 89:430–438

    Article  PubMed  CAS  Google Scholar 

  • Brennan ACE, Harris SA, Hiscock SJ (2003) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): avoidance of mating constraints imposed by low S-allele number. Phil Trans R. Soc Lond B 358:1047–1050

    Article  CAS  Google Scholar 

  • Brennan AC, Bridle JR, Wang A-L, Hiscock SJ, Abbott RJ (2009) Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol 183:702–717

    Article  PubMed  Google Scholar 

  • Brennan ACE, Harris SA, Hiscock SJ (2006) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): S allele diversity across the British range. Evolution 60:213–224

    PubMed  CAS  Google Scholar 

  • Brennan ACE, Harris SA, Hiscock SJ (2005) Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): a successful colonizing species in the British Isles. New Phytol 168:475–486

    Article  PubMed  Google Scholar 

  • Brennan AC, Barker D, Hiscock SJ, Abbott RJ (2012) Molecular genetic and quantitative trait divergence associated with recent homoploid hybrid speciation: a study of Senecio squalidus (Asteraceae). Heredity 109:87–95

    Article  Google Scholar 

  • Buggs RJA, Soltis PS, Mavrodiev EV, Symonds VV, Soltis DE (2008) Does phylogenetic distance between parental genomes govern the success of polyploids? Castanea 73:74–93

    Article  Google Scholar 

  • Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson A, Soltis PS, Soltis DE (2009) Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103:73–81

    Article  PubMed  CAS  Google Scholar 

  • Buggs RJA, Zhang L, Miles N, Tate JA, Gao L, Wei W, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE (2011) Transcriptomic shock generates evolutionary novelty in a newly formed natural allopolyploid plant. Curr Biol 21:551–556

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JH (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics 182:503–517

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Burke JM (2007) Genetic divergence and hybrid speciation. Evolution 61:1773–1780

    Article  PubMed  Google Scholar 

  • Coleman M, Forbes DG, Abbott RJ (2001) A new subspecies of Senecio mohavensis (Compositae) reveals an old–new World species disjunction. Edinburgh J Botany 58:384–403

    Google Scholar 

  • Crisp PC (1972) Cytotaxonomic studies in the section Annui of Senecio. Ph.D Thesis, University of London

    Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  • Dong YZ, Liu ZL, Shan XH, Qiu T, He MY, Liu B (2005) Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. Genetika 41:1089–1095

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258

    Article  PubMed  CAS  Google Scholar 

  • Garcı′a-Ortiz MV, Ariza RR, Rolda′n-Arjona T (2001) An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol Biol 47:795–804

    Article  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  PubMed  CAS  Google Scholar 

  • Gray AJ, Marshall DF, Raybould AF (1991) A century of evolution in Spartina anglica. Adv Ecol Res 21:1–62

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Harland SC (1955) The experimental approach to the species problem. In: Lousley JE (ed) Species studies in the British flora. Botanical Society of the British Isles, London, pp 16–20

    Google Scholar 

  • Harris SA (2002) Introduction of Oxford ragwort, Senecio squalidus L. (Asteraceae), to the United Kingdom. Watsonia 24:31–43

    Google Scholar 

  • Harris SA, Ingram R (1992) Molecular systematics of the genus Senecio L. I. hybridization in a British polyploid complex. Heredity 69:1–10

    Article  CAS  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:R435–R444

    Article  PubMed  CAS  Google Scholar 

  • Hegarty MJ, Jones JM, Wilson ID, Barker GL, Coghill JA, Sanchez-Baracaldo P, Liu G, Buggs RJA, Abbott RJ, Edwards KJ, Hiscock SJ (2005) Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Mol Ecol 14:2493–2510

    Article  PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc Lond B 363:3055–3069

    Article  CAS  Google Scholar 

  • Hegarty MJ, Batstone T, Barker GL, Edwards KJ, Abbott RJ, Hiscock SJ (2011) Nonadditive changes to cytosine methylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae). Mol Ecol 20:105–113

    Article  PubMed  CAS  Google Scholar 

  • Hiscock SJ (2000a) Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae) – a successful colonising species. Heredity 84:10–19

    Article  Google Scholar 

  • Hiscock SJ (2000b) Self-incompatibility in Senecio squalidus L. (Asteraceae). Ann Bot 85(Supplement A):181–190

    Article  CAS  Google Scholar 

  • Ingram R (1978) The genomic relationship of Senecio squalidus L. and Senecio vulgaris L. and the significance of genomic balance in their hybrid S. x baxteri Druce. Heredity 40:459–462

    Article  Google Scholar 

  • Ingram R, Noltie HJ (1984) Ray floret morphology and the origin of variability in Senecio cambrensis Rosser, a recently established allopolyploid species. New Phytol 96:601–607

    Article  Google Scholar 

  • Ingram R, Noltie HJ (1989) Early adjustment of patterns of metaphase association in the evolution of polyploid species. Genetica 78:21–24

    Google Scholar 

  • Ingram R, Noltie HJ (1995) Biological flora of the British isles: Senecio cambrensis Rosser. J Ecol 83:537–546

    Article  Google Scholar 

  • James JK, Abbott RJ (2005) Recent, allopatric, homoploid hybrid speciation: the origin of Senecio squalidus (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 59:2533–2547

    Google Scholar 

  • Jiao L, Wickett NJ, Ayyampalayam S, Chanderbali et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  PubMed  CAS  Google Scholar 

  • Kadereit JW, Uribe-Convers S, Westberg E, Comes HP (2006) Reciprocal hybridization at different times between Senecio flavus and Senecio glaucus gave rise to two polyploidy species in north Africa and south-west Asia. New Phytol 169:431–441

    Article  PubMed  CAS  Google Scholar 

  • Kent DH (1963) Senecio squalidus L. in the British isles. 7 Wales. Nat Wales 8:175–178

    Google Scholar 

  • Kim M, Cui M-L, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E (2008) Regulatory genes control a key morphological and ecological trait transferred between species. Science 322:1116–1119

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploid in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and diversity of polyploid plants. Science 320:481–483

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Adams KL (2007) Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr Biol 17:1669–1674

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  PubMed  CAS  Google Scholar 

  • Lowe AJ, Abbott RJ (2000) Routes of origin of two recently evolved hybrid taxa: Senecio vulgaris var. hibernicus and York radiate groundsel (Asteraceae). Am J Bot 87:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Lowe AJ, Abbott RJ (2003) A new British species, Senecio eboracensis (Asteraceae), another hybrid derivative of S. vulgaris L. and S. squalidus L. Watsonia 24:375–388

    Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733–746

    Article  PubMed  CAS  Google Scholar 

  • Marshall DF, Abbott RJ (1980) On the frequency of introgression of the radiate (Tr) allele from Senecio squalidus L. into Senecio vulgaris L. Heredity 45:133–135

    Article  Google Scholar 

  • Moffatt BA, Allen M, Snider S, Pereira LA, Todorova M, Summers PS, Weretilnyk EA, Martin-McCaffrey L, Wagner C (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol 128:812–821

    Article  PubMed  CAS  Google Scholar 

  • Mull L, Ebbs ML, Bender J (2006) A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics 174:1161–1171

    Article  PubMed  CAS  Google Scholar 

  • Novak SJ, Soltis DE, Soltis PS (1991) Ownbey’s Tragopogons: 40 years later. Am J Bot 78:1586–1600

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploidy: incidence and evolution. Annu Rev Genet 34:401–437

    Article  PubMed  CAS  Google Scholar 

  • Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche M (2010) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015

    Article  Google Scholar 

  • Paun O, Forest F, Fay MF, Chase MW (2009) Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytol 182:507–518

    Article  PubMed  Google Scholar 

  • Pelser PB, Nordenstam B, Kadereit JW, Watson LE (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1062–1077

    Article  Google Scholar 

  • Pelser PB, Abbott RJ, Comes HP, Milton JJ, Möller M, Looseley ME, Cron GV, Barcelona JF, Kennedy AH, Watson LE, Barone R, Hernández F, Kadereit JW (2012) The genetic ghost of an invasion past: colonization and extinction revealed by historical hybridization in Senecio. Mol Ecol 21:369–387

    Article  PubMed  CAS  Google Scholar 

  • Pereira LA, Schoor S, Goubet F, Dupree P, Moffatt BA (2006) Deficiency of adenosine kinase activity affects the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. Planta 224:1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Pickup M, Young AG (2008) Population size, self-incompatibility and genetic rescue in diploid and tetraploid races of Rutidosis leptorrhynchoides (Asteraceae). Heredity 100:268–274

    Article  PubMed  CAS  Google Scholar 

  • Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, and Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Rosser EM (1955) A new British species of Senecio. Watsonia 3:228–232

    Google Scholar 

  • Salone V, Rudinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138

    Article  PubMed  CAS  Google Scholar 

  • Salmon A, Ainouche ML (2010) Polyploidy and DNA methylation: new tools available. Mol Ecol 19:213–215

    Article  PubMed  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in higher plants. Am Nat 91:337–354

    Article  Google Scholar 

  • Stupar RM, Hermanson PJ, Springer NM (2007) Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm. Plant Physiol 145:411–425

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Ritland K (1998) Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80:225–232

    Article  Google Scholar 

  • Urbanska KM, Hurka H, Landolt E, Neuffer B, Mummenhoff K (1997) Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, central Switzerland: biosystematics and molecular evidence. Plant Syst Evol 204:233–256

    Article  Google Scholar 

  • Vincent PLD (1996) Progress on clarifying the generic concept of Senecio based on an extensive world-wide sample of taxa. In Hind DJN, Beentje HJ (eds) Compositae: systematics. proceedings of the international compositae conference Kew 1994, vol 1, Royal Botanic Gardens, Kew, pp 597–611

    Google Scholar 

  • Wang J, Tian L, Lee H-Y, Chen ZJ (2006a) Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173:965–974

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Lee H-S, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006b) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Article  PubMed  CAS  Google Scholar 

  • Weir J, Ingram R (1980) Ray morphology and cytological investigations of Senecio cambrensis Rosser. Heredity 86:237–241

    Google Scholar 

  • Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in flowering plants. Proc Nat Acad Sci USA 106:13875–13879

    Article  PubMed  CAS  Google Scholar 

  • Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research on Senecio cambrensis and its parents has been supported by grants from the NERC, BBSRC and Leverhulme Trust to whom we are grateful. We would also like to acknowledge our long-term collaboration with Keith Edwards and the considerable efforts of former research students, technicians and postdocs who contributed to the research over the past 25 years. These include Alexandra Allen, Paul Ashton, Garry Barker, Tom Batstone, Adrian Brennan, Mark Chapman, David Forbes, Amanda Gillies, Helen Ireland, Juliet James, Joanna Jones, Andrew Lowe, David Tabah, and Ian Wilson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Hegarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hegarty, M.J., Abbott, R.J., Hiscock, S.J. (2012). Allopolyploid Speciation in Action: The Origins and Evolution of Senecio cambrensis . In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_13

Download citation

Publish with us

Policies and ethics