Skip to main content

Diversity and Biotechnological Applications of Prokaryotic Enzymes

  • Reference work entry

Abstract

The global enzyme market was estimated at US $5 billion in 2009. Taking into consideration the compound annual growth rate (CAGR) of 6 % for the next 5 years, this market is expected to reach US $7 billion by 2015. Enzymes have been used in a wide range of applications in the fuel, pharmaceutical, brewing, food, animal feed, bioremediation, detergent, paper, and textile industries. The industrial sector is under continuous pressure to use more environmentally friendly processes and to find new methods to make products more competitive. Consequently, microbial enzymes are increasingly replacing conventional chemical catalysts in a range of industrial processes. Microbial enzymes present some advantages when compared to enzymes sourced from plants and animals which may be seasonal. There is a reliable supply of raw material to make microbial enzymes whenever necessary, and their production in bioreactors is easily controlled and predictable; excreted microbial enzymes are more robust in comparison to the intracellular animal and plant enzymes, and the microbial genetic diversity is a source of biocatalysts with a wide specificity range. This chapter is a review of the important prokaryotic enzyme families used in present-day biotechnology. A comprehensive survey on lipases, amylases, transglutaminases, cellulases, peroxidases, and peptidases, including keratinases, is presented. This chapter also focuses on the types of catalyzed reactions, the mechanisms of enzyme actions, and the main producing microorganisms, as well the contribution of molecular biology for enzyme production.

Despite the promising performance of newly studied enzymes in the laboratory, their application in the industrial milieu might fail due to their lack of robustness. However, as anaerobic, extremophilic, and marine bacteria might be a source of enzymes with superior chances of success in biotechnological processes, a great deal of laboratory effort has been concentrated on their production and characterization. Furthermore, the design of novel enzymes as well as molecular approaches such as enzyme evolution and metagenomic approaches can be used to identify and develop novel biocatalysts from uncultured bacteria—a treasure of unknown proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adekoya OA, Sylte I (2009) The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Design 73:7–16

    CAS  Google Scholar 

  • Ager DJ, Pantaleone DP, Henderson SA, Katritzky AR, Prakash I, Walters DE (1998) Commercial, synthetic nonnutritive sweeteners. Angew Chemie Int Ed 37:1802–1817

    CAS  Google Scholar 

  • Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53:2613–2617

    CAS  Google Scholar 

  • Andreaus J, Filho EXF (2008) Biotechnology of holocellulose-degrading enzymes. In: Hou CT, Shaw J-F (eds) Biocatalysis and bioenergy. Willey, New York, pp 197–229

    Google Scholar 

  • Arantes V, Saddler JN (2010) Acess to cellulose limits the efficiency of enzymatichydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4–12

    PubMed  Google Scholar 

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158

    CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    PubMed  CAS  Google Scholar 

  • Arrizubieta MJ (2007) Transglutaminases. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and applications. Springer, New York, pp 567–581

    Google Scholar 

  • Atkinson HJ, Babbitt PC, Sajid M (2009) The global cysteine peptidase landscape in parasites. Trends Parasitol 25(12):573–581

    PubMed  CAS  Google Scholar 

  • Banbula A (1998) Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution. Structure 6:1185–1193

    PubMed  CAS  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res 3:82–92

    Google Scholar 

  • Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36

    PubMed  CAS  Google Scholar 

  • Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–524

    PubMed  CAS  Google Scholar 

  • Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377

    PubMed  CAS  Google Scholar 

  • Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:6533–6544

    Google Scholar 

  • Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline proteinase Savinase™ from Bacillus lentus at 1.4 Å resolution. J Mol Biol 223:427–445

    PubMed  CAS  Google Scholar 

  • Bloois EV, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430

    PubMed  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    PubMed  CAS  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible way to explore nature’s chemical diversity. Chembiochem 3:619–627

    PubMed  CAS  Google Scholar 

  • Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200

    PubMed  CAS  Google Scholar 

  • Böttcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–292

    PubMed  Google Scholar 

  • Brady D, Jordaan EJ (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    PubMed  CAS  Google Scholar 

  • Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MC (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133(45):18006–18009. doi:10.1021/ja203972q

    PubMed  CAS  Google Scholar 

  • Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210

    PubMed  CAS  Google Scholar 

  • Busto E, Gotor-Fernandez V, Gotor V (2010) Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem Soc Rev 39:4504–4523

    PubMed  CAS  Google Scholar 

  • Cai J, Xie Y, Song B, Wang Y, Zhang Z, Feng Y (2011) Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biotechnol 89:1463–1473

    PubMed  CAS  Google Scholar 

  • Caloni F (2009) Safety and efficacy of Ronozyme® ProAct (serine protease) for use as feed additive for chickens for fattening (EFSA panel on additives and products or substances used in animal feed, EFSA panel on genetically modified organisms). EFSA J 1185:1–15, ISSN 1831-4732.-7:7

    Google Scholar 

  • Cardenas F, de Castro MS, Sanchez-Montero JM, Sinisterra JV, Valmaseda M, Elson SW, Alvarez E (2001) Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme Microb Technol 28:145–154

    PubMed  CAS  Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    PubMed  CAS  Google Scholar 

  • Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29:75–83

    PubMed  Google Scholar 

  • Casadio GM, Bergamini RCM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    PubMed  Google Scholar 

  • Chao YP, Xie FH, Yang J, Lu JH, Qian SJ (2007) Screening for a new Streptomyces strain capable of efficient keratin degradation. J Environ Sci 19:1125–1128

    CAS  Google Scholar 

  • Charpe TW, Rathod VK (2010) Biodiesel production using waste frying oil. Waste Manag 26:487–494

    Google Scholar 

  • Chartrain M, Katz L, Marcin C, Thien M, Smith S, Fisher E (1993) Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001. Enzyme Microb Technol 15:575–580

    CAS  Google Scholar 

  • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) FEMS Microbiol Rev 34:171–198

    PubMed  CAS  Google Scholar 

  • Chen Z, Wilmanns M, Zeng AP (2010) Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotechnol 28(10):535–542

    Google Scholar 

  • Chen R, Guo L, Dang H (2011) Gene cloning, expression and characterization of a cold- adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J Microbiol Biotechnol 27:431–441

    CAS  Google Scholar 

  • Chi MC, Chen YH, Wu TJ, Lo HF, Lin LL (2010) Engineering of a truncated α-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J Biosci Bioeng 109(6):531–538

    PubMed  CAS  Google Scholar 

  • Copley SD, Novak WR, Babbitt PC (2004) Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43(44):13981–13995

    PubMed  CAS  Google Scholar 

  • Cortez J, Bonner PLR, Griffin M (2004) Application of transglutaminases in the modification of wool textiles. Enzyme Microb Technol 34:64–72

    CAS  Google Scholar 

  • Cortez J, Anghierib A, Bonnera PLR, Griffin M, Freddi G (2007) Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzyme Microb Technol 40:1698–1704

    CAS  Google Scholar 

  • Darwin KH (2009) Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol 7(7):485–491

    PubMed  CAS  Google Scholar 

  • Dash C, Kulkarni A, BenRao M (2003) Aspartic peptidase inhibitors: implications in drug development. Crit Rev Biochem Mol Biol 38:89–119

    PubMed  CAS  Google Scholar 

  • Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2003) Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol 69:3011–3014

    PubMed  CAS  Google Scholar 

  • Davies GJ, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    PubMed  CAS  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    PubMed  CAS  Google Scholar 

  • Dharmsthiti S, Pratuangdejkul J, Theeragool GT, Luchai S (1998) Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J Gen Appl Microbiol 44:139–145

    PubMed  CAS  Google Scholar 

  • Dheeman DS, Henehan GTM, Frías JM (2011) Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis. Bioresour Technol 102:3373–3379

    PubMed  CAS  Google Scholar 

  • Dive V, Yiotakis A, Nicolaou A, Toma F (1990) Inhibition of Clostridium histolyticum collagenases by phosphonamide peptide inhibitors. Eur J Biochem 191:685–693

    PubMed  CAS  Google Scholar 

  • Dolynchuk KN, Bowness JM (1999) Use of transglutaminase inhibitor for the treatment of scar tissue. US Patent US5885982

    Google Scholar 

  • Doman-Pytka M, Bardowski J (2004) Pullulan degrading enzymes of bacterial origin. Crit Rev Microbiol 30(2):107–121

    PubMed  CAS  Google Scholar 

  • Du X, Choi GC, Kim R, Wang W, Jancarik J, Yokota H, Kim SH (2000) Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-Å resolution. Proc Natl Acad Sci 97(26):14079–14084

    PubMed  CAS  Google Scholar 

  • Eckert LR, Sturniolo MT, Broome AM, Ruse M, Rorkez EA (2005) Transglutaminase function in epidermis. J Invest Dermatol 124:481–492

    PubMed  CAS  Google Scholar 

  • Fan Z, Yue C, Tang Y, Zhang V (2009) Cloning, sequence analysis and expression of bacterial lipase-coding DNA fragments from environment in Escherichia coli. Mol Biol Rep 36:1515–1519

    PubMed  CAS  Google Scholar 

  • Feller G, Gerday G (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208

    PubMed  CAS  Google Scholar 

  • Ferrer M, Beloqui A, Golyshina OV, Plou FJ, Neef A, Chernikova TN, Fernández-Arrojo L, Ghazi I, Ballesteros A, Elborough K, Timmis KN, Golyshin PN (2007) Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome. Biotechnol J 2(2):207–213

    PubMed  CAS  Google Scholar 

  • Fessner W, Anthonsen A (2009) Modern biocatalysis. Wiley-VCH, Weinheim

    Google Scholar 

  • FitzGerald RJ, O’Cuinn G (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol Adv 24:234–237

    PubMed  CAS  Google Scholar 

  • Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    PubMed  CAS  Google Scholar 

  • Freedonia (2005) World enzymes to 2009. Freedonia Group Incorporated, Cleveland

    Google Scholar 

  • Freedonia (2009) World enzymes to 2013 – Market research, market share, market size, sales, demand forecast, market leaders, company profiles, industry trends. Freedonia Group Incorporated, Cleveland, http://www.freedoniagroup.com/World-Enzymes.html. Accessed 05 Jul 2011

  • Friedrich J, Gradisar H, Vrecl M, Pogacnik A (2005) In vitro degradation of porcine skin epidermis by a fungal keratinase of Doratomyces microsporus. Enzyme Microb Technol 36:455–460

    CAS  Google Scholar 

  • Fukuda H, Hama S, Talamampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673

    PubMed  CAS  Google Scholar 

  • Fusek M, Lin XL, Tang T (1990) Enzymic properties of thermopsin. J Biol Chem 265:1496–1501

    PubMed  CAS  Google Scholar 

  • Gao DN, Uppugundia SPS, Chundawat X, Yu S, Hermanson K, Gowda P, Brumm D, Mead VB, Dale BE (2010) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5

    Google Scholar 

  • Garabito MJ, Maquez MC, Ventosa A (1998) Halotolerant Bacillus diversity in hypersaline environments. Can J Microbiol 44:95–102

    CAS  Google Scholar 

  • Garcia-Arellano H, Alcalde M, Ballesteros A (2004) Use and improvement of microbial redox enzymes for environmental purposes. Microb Cell Fact 3:10

    PubMed  Google Scholar 

  • Gerritse G, Hommes RW, Quax WJ (1998) Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Appl Environ Microbiol 64(7):2644–2651

    Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Enter JV, Hutchison CA III, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Google Scholar 

  • Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63(6):1568–1576

    PubMed  CAS  Google Scholar 

  • Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    CAS  Google Scholar 

  • Ginalski K, Kinch L, Leszek Rychlewski L, Grishin NV (2004) BTLCP proteins: a novel family of bacterial transglutaminase-like cysteine proteinases. Trends Biochem Sci 29(8):392–395

    PubMed  CAS  Google Scholar 

  • Global Industry Analysts (2011) Industrial enzymes: a global strategic business report. Global Industry Analysts, San Jose, http://www.prweb.com/releases/industrial_enzymes/proteases_carbohydrases/prweb8121185.htm. Accessed 05 July 2011

  • Goldberg DM (2005) Clinical enzymology: an autobiographical history. Clin Chim Acta 357:93–112

    PubMed  CAS  Google Scholar 

  • Gosh PK, Saxena RK, Gupta R, Yadav RP, Davison S (1996) Microbial lipases: production and applications. Sci Prog 79:119–157

    Google Scholar 

  • Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587

    PubMed  CAS  Google Scholar 

  • Govan V, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    PubMed  CAS  Google Scholar 

  • Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426

    PubMed  CAS  Google Scholar 

  • Green H, Dijan P (1996) Cosmetic containing comeocyte proteins and transglutaminase, and method of application. US Patent US5525336

    Google Scholar 

  • Grenier D, Tanabe S (2010) Porphyromonas gingivalis gingipains trigger a proinflammatory response in human monocyte-derived macrophages through the p38α mitogen-activated protein kinase signal transduction pathway. Toxins 2:341–352

    PubMed  CAS  Google Scholar 

  • Grunenfelder B, Rummel G, Vohradsky J, Roder D, Langen H, Jenal U (2001) Proteomic analysis of the bacterial cell cycle. Proc Natl Acad Sci 98:4681–4686

    PubMed  CAS  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Biochem Biotechnol 64:763–781

    CAS  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    PubMed  CAS  Google Scholar 

  • Gupta P, B LS, Shrivastava R (2011) Lipase catalyzed- transesterification of vegetable oils by lipolytic bacteria. Research J Microbiol 6:281–288

    CAS  Google Scholar 

  • Hadeball W (1991) Production of lipase by Yarrowia lipolytica I. Lipases from yeasts. Acta Biotechnol 11:159–167

    CAS  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    PubMed  CAS  Google Scholar 

  • Hamid NSA, Zen HB, Tein OB, Halifah YM, Saari N, Bakar FA (2003) Screening and identification of extracellular lipase-producing thermophilic bacteria from a Malaysian hot spring. World J Microbiol Biotechnol 19:961–968

    Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    PubMed  CAS  Google Scholar 

  • Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844

    CAS  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(28):463–467

    PubMed  CAS  Google Scholar 

  • Hettinga WG, Junginger HM, Dekker SC, Hoogwijk M, Mcaloon AJ, Hicks KB (2009) Understanding the reductions in US corn ethanol production costs: an experience curve approach. Energy Policy 37:190–203

    Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulose biomass. Curr Opin Biotechnol 10:358–364

    PubMed  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimtos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    PubMed  CAS  Google Scholar 

  • Hofmann B, Hecht HJ, Flohé L (2002) Peroxiredoxins. J Biol Chem 383(3–4):347–364

    CAS  Google Scholar 

  • Horiguchi Y, Inoue N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, Matsuda M (1997) Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP binding protein Rho. Proc Natl Acad Sci USA 94:11623–11626

    PubMed  CAS  Google Scholar 

  • Horimoto Y, Dee DR, Yada RY (2009) Multifunctional aspartic peptidase prosegments. N Biotechnol 25:318–324

    PubMed  CAS  Google Scholar 

  • Horta BB, Oliveira MA, Discola KF, Cussiol JRR, Netto LES (2010) Structural and biochemical characterization of peroxiredoxin Qβ_from Xylella fastidiosa. J Biol Chem 285(21):16051–16065

    PubMed  CAS  Google Scholar 

  • Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46

    PubMed  CAS  Google Scholar 

  • Hu BH, Messersmith PB (2003) Formation of hydrogels. J Am Chem Soc 125:14298–14299

    PubMed  CAS  Google Scholar 

  • Ilies M, Banciu MDM, Scozzafava A, Ilies MA, Caproiu MT, Supuran CT (2003) Protease inhibitors: synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating arylsulfonylureido and 5-Dibenzo- suberenyl/suberyl moieties. Bioorg Med Chem 11:2227–2239

    PubMed  CAS  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    PubMed  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    PubMed  CAS  Google Scholar 

  • Jaeger K-E, Eggert T, Eipper A, Reetz MT (2001) Directed evolution and the creation of enantioselective biocatalysts. Appl Microbiol Biotechnol 55:519–530

    PubMed  CAS  Google Scholar 

  • Jensen K, Østergaard PR, Wilting R, Lassen SF (2010) Identification and characterization of a bacterial glutamic peptidase. BMC Biochem 11:47

    PubMed  CAS  Google Scholar 

  • Joong-Jae K, Masui R, Kuramitsu S, Seo JH, Kim K, Sung MH (2008) Characterization of growth-supporting factors produced by Geobacillus toebii for the Commensal Thermophile Symbiobacterium toebii. J Microbiol Biotechnol 18(3):490–496

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    PubMed  CAS  Google Scholar 

  • Josten A, Meusel M, Spener F, Haalck L (1999) Enzyme immobilization via microbial transglutaminase: a method for the generation of stable sensing surfaces. J Mol Catal B Enzym 7:57–66

    CAS  Google Scholar 

  • Kamijo T, Saito A, Ema S, Yoh I, Hayashi H, Nagata R, Nagata Y, Ando A (2011) Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01. Antonie van Leeuwenhoek 99:179–187

    PubMed  CAS  Google Scholar 

  • Kanjanavas P, Khuchareontaworn S, Khawsak P, Pakpitcharoen A, Pothivejkul K, Santiwatanakul S, Matsui K, Kajiwara T, Chansiri K (2010) Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant Bacillus sp. RN2. Int J Mol Sci 11:3783–3792

    PubMed  CAS  Google Scholar 

  • Kanlayakrit W, Boonpan A (2007) Screening of halophilic lipase-producing bacteria and characterization of enzyme for fish sauce quality improvement. Kasetsart J Nat Sci 41:576–585

    CAS  Google Scholar 

  • Kantyka T, Rawlings ND, Potempa J (2010) Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function. Biochimie 92:1644–1656

    PubMed  CAS  Google Scholar 

  • Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matsui H, Suzuki E (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277:44252–44260

    PubMed  CAS  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 3:301–355

    Google Scholar 

  • Kelly RM, Dijkhuizen L, Leemhuis H (2009) Starch and α-glucan acting enzymes, modulating their properties by direct evolution. J Biotechnol 140:184–193

    PubMed  CAS  Google Scholar 

  • King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:4

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Yamanaka S, Miwa K, Suzuki S, Eto Y, Tanita Y, Yokozeki K, Hashiguchi K (1999) Bacillus-derived TGase US 5731183

    Google Scholar 

  • Kobayashi K, Yamanaka S, Tanita Y, Tsuyoshi N, Fudo R, Shinozaki J, Yokozeki K, Suzuki S (2002) Process for producing transglutaminase by microorganism US 6472182

    Google Scholar 

  • Korniłłowicz-Kowalska T, Justyna B (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31(8):1689–1701

    PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    PubMed  CAS  Google Scholar 

  • Kunert J (1972) Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 28:1025–1026

    PubMed  CAS  Google Scholar 

  • Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Rev Int 17:221–232

    CAS  Google Scholar 

  • Kwak J, Lee K, Shin DH, Maeng JS, Park DS, Oh HW, Son KH, Bae KS (2007) Biochemical and genetic characterization of arazyme, an extracellular metalloprotease produced from Serratia proteamaculans HY-3. J Microbiol Biotechnol 175(5):761–768

    Google Scholar 

  • Lagaert S, Beliën T, Volckaert G (2009) Plant cell walls: protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 20:1064–1073

    PubMed  CAS  Google Scholar 

  • Larre C, Denery Papini S, Popineau Y, Deshayes C, Desserme C, Lefebvre J (2000) Biochemical analysis and rheological properties of gluten modified by transglutaminase. Cereal Chem 77:121–127

    CAS  Google Scholar 

  • Lazniewski M, Steczkiewicz K, Knizewski L, Wawer I, Ginalski K (2011) Novel transmembrane lipases of alpha/beta hydrolase fold. FEBS Lett 585:870–874

    PubMed  CAS  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    PubMed  CAS  Google Scholar 

  • Li X-H, Yang H-J, Roy B, Wang D, Yue W-F, Jiang L-J, Park EY, Miao Y-G (2009) The most stirring technology in future: cellulase enzyme and biomass utilization. Afr J Biotechnol 8:2418–2422

    CAS  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, Weinheim

    Google Scholar 

  • Lin X, Tang J (1990) Purification, characterization, and gene cloning of thermopsin, a thermostable acid protease from Sulfolobus acidocaldarius. J Biol Chem 265:1490–1495

    PubMed  CAS  Google Scholar 

  • Lin X, Wong SL, Miller ES, Shih JCH (1997) Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol 19:134–138

    PubMed  CAS  Google Scholar 

  • López-Otín C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    PubMed  Google Scholar 

  • Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101:647–653

    PubMed  CAS  Google Scholar 

  • Lynd LR, Van WH, Zyl JEMB, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    PubMed  CAS  Google Scholar 

  • Ma J, Zhang Z, Wang B, Kong X, Wang Y, Shugui Cao S, Feng Y (2006) Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif 45:22–29

    PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L, Koonin EV (1999) A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 8(8):1714–1719

    PubMed  CAS  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    PubMed  CAS  Google Scholar 

  • Mala JGS, Takeuchi S (2008) Understanding structural features of microbial lipases: an overview. Anal Chem 3:9–19

    CAS  Google Scholar 

  • Malloy JL, Thibodeaux RAW, O’Callaghan BARJ, Wright JR (2005) Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. J Physiol Lung Cell Mol Physiol 288:L409–L418

    CAS  Google Scholar 

  • Marin-Navarro J, Polaina J (2011) Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol 89:1267–1273

    PubMed  CAS  Google Scholar 

  • Maurer KH (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334

    PubMed  CAS  Google Scholar 

  • McDermott MK, Chen T, Williams CM, Markley KM, Payne GF (2004) Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules 5:1270–1279

    PubMed  CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    PubMed  CAS  Google Scholar 

  • Messaoudi A, Belguith H, Gram I, Hamida JB (2010) Classification of EC 3.1.1.3 bacterial true lipases using phylogenetic analysis. African J Biotechnol 9:8243–8247

    CAS  Google Scholar 

  • Metzmacher I, Ruth P, Abel M, Friess W (2007) In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair Regen 2:549–555

    Google Scholar 

  • Mireya Santos M, Torné JM (2009) Recent patents on transglutaminase production and applications: a brief review. Recent Pat Biotechnol 3:166–174

    PubMed  Google Scholar 

  • Mohorcic MA, Torkar A, Friedrich J, Kristl J, Murdan S (2007) An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm 332:196–201

    PubMed  CAS  Google Scholar 

  • Monroe A, Setlow P (2006) Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J Bacteriol 188:7609–7616

    PubMed  CAS  Google Scholar 

  • Moreira LRS, von Gal Milanezi N, Filho EXF (2011) Enzymology of plant cell wall breakdown: an update. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 73–96

    Google Scholar 

  • Murata S, Yashiroda S, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev 10:104–115

    CAS  Google Scholar 

  • Murooka Y, Yamashita M (2001) Genetic and protein engineering of diagnostic enzymes, cholesterol oxidase and xylitol oxidase. J Biosci Bioeng 91:433–441

    PubMed  CAS  Google Scholar 

  • Muszbek L, Adany R, Mikkola H (1996) Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function. Crit Rev Clin Lab Sci 3:357–421

    Google Scholar 

  • Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737

    PubMed  CAS  Google Scholar 

  • Nataf Y, Bahari L, Kahel-Raifer H, Borovak I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci 107(43):18646–18651

    PubMed  CAS  Google Scholar 

  • Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production. Dyn Biochem Process Biotech Mol Biol 1:1–14

    Google Scholar 

  • Ney KH (1979) Bitterness of peptides: amino acid composition and chain length. In: Bondreau JC (ed) Food taste chemistry. American Chemical Society, Washington, DC, pp 149–173

    Google Scholar 

  • Nghiem NP, Taylor F, Johnston DB, Shelly JK, Hicks KB (2011) Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 l. Appl Biochem Biotechnol 165(3–4):870–882. doi:10.1007/s12010-011-9304-1

    PubMed  CAS  Google Scholar 

  • Nichaus F, Bertoldo C, Kühler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 89:1267–1273

    Google Scholar 

  • Ohnishi A, Nagano A, Fujimoto N, Suzuki M (2011) Phylogenetic and physiological characterization of mesophilic and thermophilic bacteria from a sewage sludge composting process in Sapporo, Japan. World J Microbiol Biotechnol 27:333–340

    Google Scholar 

  • Olempska-Beer ZWS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms—a review. Regul Toxicol Pharmacol 45:144–158

    PubMed  CAS  Google Scholar 

  • Orenzen PC, Schlimme E (1998) Properties and potential fields of application of transglutaminase preparations in dairying. Bull Int Dairy Fed 332:347

    Google Scholar 

  • Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460

    PubMed  CAS  Google Scholar 

  • Paetzel M, Andrew K, Strynadka NCJ, Dalbey RE (2002) Signal peptidases. Chem Rev 102:4549–4579

    PubMed  CAS  Google Scholar 

  • Panesar PS, Marwaha SS, Kennedy JF (2006) Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol 81:623–635

    CAS  Google Scholar 

  • Pariza MW, Cook M (2010) Determining the safety of enzymes used in animal feed. Regul Toxicol Pharmacol 56:332–342

    PubMed  CAS  Google Scholar 

  • Pason P, Kosugi A, Waeonukul R, Tachaapaikoon C, Ratanakhanokchai K, Arai T, Murata Y, Nakajima J, Mori Y (2010) Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. J Ind Microbiol Biotechnol 85:573–580

    CAS  Google Scholar 

  • Peng R, Lin J, Wei D (2010) Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Appl Biochem Biotechnol 162:733–743

    PubMed  CAS  Google Scholar 

  • Pérez J, Munõz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    PubMed  Google Scholar 

  • Plácido D, Fernandes CG, Carrondo IA, Henriques MA, Adriano HO, Archer M (2008) Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expr Purif 59:1–8

    PubMed  Google Scholar 

  • Pohlenz HD, Boidol W, Schuttke I, Streber W (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J Bacteriol 174:6600–6607

    PubMed  CAS  Google Scholar 

  • Polgar L (2005) The catalytic triad of serine peptidases. Cell Mol Life Sci 62:2161–2172

    PubMed  CAS  Google Scholar 

  • Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433:240–254

    PubMed  CAS  Google Scholar 

  • Popa VI (1998) Enzymatic hydrolysis of hemicelluloses and cellulose. In: Severian D (ed) Polysaccharides structural diversity and functional versatility. Marcel Dekker, New York, pp 969–1006

    Google Scholar 

  • Potempa JJ, Pike RN (2009) Corruption of innate immunity by bacterial proteases. J Innate Immun 1:70–87

    PubMed  CAS  Google Scholar 

  • Potvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanschagrin F, Law GW, Levesque RC (2003) Pseudomonas in vivo functional genomic for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5(12):1294–1308

    PubMed  CAS  Google Scholar 

  • Prakash O, Jaiswal N (2010) α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 160:2401–2414

    PubMed  Google Scholar 

  • Qing X, Zhang XH (2002) Detergent enzyme application handbook version 2. Chinese Light Industry Press and Novozymes, Beijing

    Google Scholar 

  • Ragkousi K, Setlow P (2004) Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186(17):5567–5575

    PubMed  CAS  Google Scholar 

  • Rahman RNZRA, Baharum SN, Basri M (2005) High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem 341:267–274

    PubMed  CAS  Google Scholar 

  • Raksakulthai R, Haard NF (2003) Exopeptidases and their application to reduce bitterness in food: a review. Crit Rev Food Sci Nutr 43(4):401–445

    PubMed  CAS  Google Scholar 

  • Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 4(4):e5271

    PubMed  Google Scholar 

  • Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51:191–196

    PubMed  CAS  Google Scholar 

  • Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem 37:187–192

    CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (2004) Introduction: metallopeptidases and their clans. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, 2nd edn. Elsevier, London, pp 231–268

    Google Scholar 

  • Rawlings ND, Bateman A (2009) Pepsin homologues in bacteria. BMC genomics 10:437–446

    PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucl Acids Res 38:D227–D233

    PubMed  CAS  Google Scholar 

  • Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of pseudomonas lipases. Chem Phys Lipids 93:3–14

    PubMed  CAS  Google Scholar 

  • Renewable Fuels Association (2011) Ethanol industry outlook: building bridges to a more sustainable future. http://www.ethanolrfa.org/pages/annual-industry-outlook. Accessed 20 July 2011

  • Rodrigues GC, Aguiar AP, Vianez Júnior JLSG, Macrae A, Nogueira de Melo AC, Vermelho AB (2010) Peptidase inhibitors as a possible therapeutic strategy for chagas disease. Curr Enzyme Inhib 6:183–194

    CAS  Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    PubMed  CAS  Google Scholar 

  • Rosenau F, Jaeger KE (2000) Bacterial lipases from pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82:1023–1032

    PubMed  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    PubMed  CAS  Google Scholar 

  • Ruiz C, Blanco A, Javier Pastor FI, Diaz P (2002) Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. FEMS Microbiol Lett 217(2):263–267

    PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, Iranzo M, Elorza MV, Sentandreu R, Mormeneo S (1995) Involvement of transglutaminase in the formation of covalent cross-links in the cell wall of Candida albicans. Arch Microbiol 164(3):186–193

    PubMed  CAS  Google Scholar 

  • Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    PubMed  CAS  Google Scholar 

  • Sá-Pereira P, Duarte JC, Ferrara MA, Lacerda PSB, Alves FC (2008) Biocatálise: Estratégias de Inovação e Criação de Mercados. In: Bon EPS, Corvo L, Vermelho AB, Paiva CLA, Ferrara MA, Coelho RR, Alencastro RB (eds) Enzimas em Biotecnologia: Producão, Aplicações e Mercado. Interciência, Brasil, pp 433–462

    Google Scholar 

  • Saeki K, Ozaki K, Kobayashi T, Ito S (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103(6):501–508

    PubMed  CAS  Google Scholar 

  • Saha BC, Hayashi K (2001) Debittering of protein hydrolyzates. Biotechnol Adv 19:355–370

    PubMed  CAS  Google Scholar 

  • Sangeetha R, Arulpandi I, Geetha A (2011) Bacterial lipases as potential biocatalysts: an overview. Res J Microbiol 6:1–24

    CAS  Google Scholar 

  • Sank A, Chi M, Shima T, Reich R, Martin GR (1989) Increased calcium levels altecellular and molecular events in wound healing. Surgery 106:1141–1148

    PubMed  CAS  Google Scholar 

  • Sano K, Kumazawa Y, Yasueda H, Seguro K, Motoki M (1998) TGase originating from Crassostrea gigas US 5736356

    Google Scholar 

  • Santos MAL, Marques S, Gil M, Tegoni M, Scozzafava A, Supuran CT (2003) Protease inhibitors: synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating succinyl hydroxamate and iminodiacetic acid hydroxamate moieties. J Enzyme Inhib Med Chem 18:233–242

    PubMed  Google Scholar 

  • Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18

    PubMed  CAS  Google Scholar 

  • Schmidt G, Selzer J, Lerm M, Aktories K (1998) The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. J Biol Chem 273:13669–13674

    PubMed  CAS  Google Scholar 

  • Schmidt-dannert C (1999) Recombinant microbial lipases for biotechnological applications. Bioorg Med Chem 7:1–8

    Google Scholar 

  • Schrempf H (2007) Biology of streptomycetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, a handbook on the biology of bacteria. Springer, New York

    Google Scholar 

  • Schwarz WH, Zverlov W, Bahl H (2004) Extracellular glycosyl hydrolases from clostridia. Adv Appl Microbiol 56:215–261

    PubMed  CAS  Google Scholar 

  • Seitz A, Schneider F, Pasternack R, Fuchsbauer HL, Hampp N (2001) Enzymatic cross-linking of purple membranes catalyzed by bacterial transglutaminase. Biomacromolecules 2:233–238

    PubMed  CAS  Google Scholar 

  • Serafini-Fracassini D, Del Duca S (2008) Transglutaminases: widespread cross-linking enzymes in plants. Ann Bot 102(2):145–152

    PubMed  CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    PubMed  CAS  Google Scholar 

  • Shu ZY, Jianga H, Lin R-F, Jianga YM, Lina L, Huanga JZ (2010) Technical methods to improve yield, activity and stability in the development of microbial lipases. J Mol Catal B Enzym 62:1–8

    CAS  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus – derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    PubMed  CAS  Google Scholar 

  • Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    PubMed  CAS  Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st to 2nd generation biofuel technologies. Organisation for Economic Co-operation and Development International Energy Agency, France. http://www.iea.org/papers/2008/2nd_Biofuel_Gen_Exec_Sum.pdf. Acessed 11 July 2011

  • Singh RN, Mehta K (1994) Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi. Eur J Biochem 225:625–634

    PubMed  CAS  Google Scholar 

  • Siqueira FG, Filho EFF (2010) Plant cell wall as a substrate for the production of enzymes with industrial applications. Mini-Rev Org Chem 7:54–60

    Google Scholar 

  • Suh HJ, Lee HK (2001) Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J Protein Chem 20:165–169

    PubMed  CAS  Google Scholar 

  • Sukuruman RK, Singhania RR, Pandey A (2005) Microbial cellulases: production, applications and challenges. J Sci Ind Res 64:832–844

    Google Scholar 

  • Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, Peng M (2010) Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol 160(4):988–1003

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102(2):73–81

    PubMed  CAS  Google Scholar 

  • Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543(2):223–228

    PubMed  CAS  Google Scholar 

  • Syngkon A, Elluri S, Koley H, Rompikuntal PK, Saha DR, Chakrabarti MK, Bhadra RK, Wai SN, Pal A (2010) Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One 5:1–11

    Google Scholar 

  • Takeuchi H, Shibano Y, Morihara K, Fukushima J, Inami S, Keil B, Gilles AM, Kawamoto S, Okuda K (1992) Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem J 281:703–708

    PubMed  CAS  Google Scholar 

  • Tang J, Lin X (2004) Thermopsin. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, 2nd edn. Elsevier, London, pp 225–227

    Google Scholar 

  • Tang WJ, Zhao H (2009) Industrial biotechnology: tools and applications. J Biotechnol 4:1725–1739

    CAS  Google Scholar 

  • Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, Klopp C, Cantarel BL, Coutinho PM, Henrissat B, Leclerc M, Doré J, Monsan P, Remaud-Simeon M, Potocki-Veronese G (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20(11):1605–1612

    PubMed  CAS  Google Scholar 

  • Taylor M, Marmer W, Brown E (2007) Evaluation of polymers prepared from gelatin and casein or whey as potential fillers. J Am Leather Chem Assoc 102(4):111–120

    CAS  Google Scholar 

  • Thomsen MH, Holm-Nielsen JB, Oleskowicz-Popiel P, Thomsen AB (2008) Pretreatment of whole-crop harvested, ensiled maize for ethanol production. Appl Biochem Biotechnol 148:23–33

    PubMed  CAS  Google Scholar 

  • Travis J, Potempa J, Maeda H (1995) Are bacterial proteinases pathogenic factors? Trends Microbiol 3(10):405–407

    PubMed  CAS  Google Scholar 

  • Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–186

    CAS  Google Scholar 

  • Trivelli X, Krimm I, Ebel C, Verdoucq L, Prouzet-Mauléon V, Chartier Y, Tsan P, Lauquin G, Meyer Y, Lancelin JM (2003) Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR. Biochemistry 42(48):14139–14149

    PubMed  CAS  Google Scholar 

  • Trujillo M, Mauri P, Benazzi L, Comini M, De Palma A, Flohé L, Radi R, Stehr M, Singh M, Ursini F, Jaeger T (2006) The mycobacterial thioredoxin peroxidase can act as a one-cysteine peroxiredoxin. J Biol Chem 281(29):20555–20566

    PubMed  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles an thermostable enzymes in biorefining. Microb Cell Fact 6:1–23

    Google Scholar 

  • Van der Maarel MJ, Van der Veen B, Uitdehaag JC, Leemhius H, Dijkuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    PubMed  Google Scholar 

  • Vermelho AB, De Simone SG, d’Avila-Levy CM, Santos ALS, Melo ACN, Silva FP Jr, Bon EPS, Branquinha MH (2007) Trypanosomatidae peptidases: a target for drugs development. Curr Enzyme Inhib 3:19–48

    CAS  Google Scholar 

  • Vermelho AB, Nogueira de Melo AC, Branquinha MH, Santos AL, D’avila-Levy CM, Couri S, Bon EPS (2008) Enzimas proteolíticas: Aplicações Biotecnológicas. In: Bon EPS, Corvo L, Vermelho AB, Paiva CLA, Ferrara MA, Coelho RR, Alencastro RB (eds) Enzimas em Biotecnologia: Produção, Aplicações e Mercado. Interciência, Brasil, pp 269–286

    Google Scholar 

  • Vignardet C, Guillaume YC, Michel L, Friedrich J, Millet J (2001) Comparison of two hard keratinous substrates submitted to the action of a keratinase using an experimental design. Int J Pharm 224:115–122

    PubMed  CAS  Google Scholar 

  • Volken de Souza CF, de Matos GSF, Hickmann MA, Ayub Z (2009) Environmental effects on transglutaminase production and cell sporulation in submerged cultivation of Bacillus circulans. Appl Biochem Biotechnol 158:302–312

    CAS  Google Scholar 

  • Waeonukul R, Kyu KL, Sakka K, Ratanakhanokchai K (2009) Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. J Biosci Bioeng 107(6):610–614

    PubMed  CAS  Google Scholar 

  • Wang JJ, Greenhut WB, Shih JCH (2005) Development of an asporogenic Bacillus licheniformis for the production of keratinase. J Appl Microbiol 98:761–767

    PubMed  CAS  Google Scholar 

  • Wang JJ, Garlich JD, Shih JCH (2006) Beneficial effects of Versazyme® a keratinase feed additive, on body weight, feed conversion and breast yield of broiler chickens. J Appl Poultry Res 15:544–550

    CAS  Google Scholar 

  • Wang A, Zhang F, Chen F, Wang M, Li H, Zeng Z, Xie ZT, Chen Z (2011) A facile technique to prepare cross-linked enzyme aggregates using p- benzoquinone as cross- linking agent. Korean Journal of Chemical Engineering 28:1090–1095

    Google Scholar 

  • Watanabe K (2004) Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol 63:520–526

    PubMed  CAS  Google Scholar 

  • Wei H, Xu Q, Taylor LE II, Baker JO, Tucker MP, Ding S-Y (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20:330–338

    PubMed  CAS  Google Scholar 

  • Wilson DB, Irwin DC (1999) Genetics and properties of cellulases. Adv Biochem Eng Biotechnol 65:1–21

    CAS  Google Scholar 

  • Władyka B, Pustelny K (2008) Cellular and molecular biology letters. Biol Lett 13:212–229

    Google Scholar 

  • Wohlgemuth R (2010) Biocatalysis key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    PubMed  CAS  Google Scholar 

  • Yamamura S, Yasutaka M, Quamrul H, Yokoyama K, Tamiya E (2002) Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294:1138–1143

    PubMed  CAS  Google Scholar 

  • Yang MT, Chang CH, Wang JM, Wu TK, Wang K, Chang CY, Li TT (2011) Crystal structure and inhibition studies of transglutaminase from Streptomyces mobaraense. J Biol Chem 286(9):7301–7307

    PubMed  CAS  Google Scholar 

  • Yokoyama K, Kikuchi NY (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454

    PubMed  CAS  Google Scholar 

  • Yoshioka M, Miwa T, Horii H, Takata M, Yokoyama T, Nishizawa K, Watanabe M, Shinagawa M, Muruyama Y (2007) Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J Appl Microbiol 102(2):509–515

    PubMed  CAS  Google Scholar 

  • Yu YJ, Wu SC, Chan HH, Chen YC, Chen ZY, Yang MT (2008) Overproduction of soluble recombinant transglutaminase from Streptomyces netropsis in Escherichia coli. Appl Microbiol Biotechnol 81:523–532

    Google Scholar 

  • Yu S, Yu S, Han W, Wang H, Zheng B, Feng Y (2010) A novel thermophilic lipase from Fervidobacterium nodosum Rt17-B1 representing a new subfamily of bacterial lipases. J Mol Catal B: Enzym 66:81–89

    CAS  Google Scholar 

  • Yu YH-R, Li Y-XZ, Chen B (2011) Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Mar Drugs 9:184–195

    PubMed  CAS  Google Scholar 

  • Yue XY, Zhang B, Jiang DD, Liu YJ, Niu TG (2011) Separation and purification of a keratinase as pesticide against root-knot nematodes. World J Microbiol Biotechnol 27(9):2147–2153

    CAS  Google Scholar 

  • Yurimoto H, Maiko Y, Yoshimi K, Hiroshi M, Nobuo K, Yasuyoshi S (2004) The pro-peptide of Streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci Biotechnol Biochem 68:2058–2069

    PubMed  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    PubMed  CAS  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    PubMed  CAS  Google Scholar 

  • Zhang Y-HP (2008) Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. J Ind Microbiol Biotechnol 35:367–375

    PubMed  CAS  Google Scholar 

  • Zhang C, Kim S-K (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    PubMed  CAS  Google Scholar 

  • Zhang J, Masui Y (1997) Role of amphibian egg transglutaminase in the development of secondary cytostatic factor in vitro. Mol Reprod Dev 47:302–311

    PubMed  CAS  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    CAS  Google Scholar 

  • Zhang X-Z, Heng Y, Zhang P (2010) One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: opportunities and challenges. Eng Life Sci 10:398–406

    CAS  Google Scholar 

  • Zhao J, Ding GH, Tao L, Yu H, Yu ZH, Luo JH, Cao ZW, Li YX (2007) Modular co- evolution of metabolic networks. BMC Bioinformatics 8:311–322

    PubMed  Google Scholar 

  • Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26(10):559–565

    PubMed  CAS  Google Scholar 

  • Zock J, Cantwell C, Swartling J, Hodges R, Pohl T, Sutton K, Rosteck P, McGilvray D, Queener S (1994) The Bacillus subtilis pnbA gene encoding p- nitrobenzyl esterase: cloning, sequence and high-level expression in Escherichia coli. Gene 151:37–43

    PubMed  CAS  Google Scholar 

  • Zubieta C, Joseph R, Krishna SS, McMullan D, Kapoor M, Axelrod HL, Miller MD, Abdubek P, Acosta C, Astakhova T, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Schimmel P, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2007) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase. TyrA. Proteins 69:234–243

    PubMed  CAS  Google Scholar 

  • Zverlov VV, Schwarz WH (2008) Bacterial cellulose hydrolysis in anaerobic environmental subsystems—Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann N Y Acad Sci 1125:298–307

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the technical assistance of Ms. Denise da Rocha de Souza, supported by fellowships from MCT/CNPq. Research supported by CAPES, FAPERJ, MCT/CNPq, and Conselho de Ensino para Graduados e Pesquisas (CEPG/UFRJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alane Beatriz Vermelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Vermelho, A.B., Noronha, E.F., Filho, E.X.F., Ferrara, M.A., Bon, E.P.S. (2013). Diversity and Biotechnological Applications of Prokaryotic Enzymes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_112

Download citation

Publish with us

Policies and ethics