Skip to main content

Statistical Shape Analysis of Surfaces in Medical Images Applied to the Tetralogy of Fallot Heart

  • Chapter
  • First Online:
Modeling in Computational Biology and Biomedicine

Abstract

There is an increasing need for shape statistics in medical imaging to provide quantitative measures to aid in diagnosis, prognosis and therapy planning. In view of this, we describe methods for computing such statistics by utilizing a well-posed framework for representing the shape of surfaces as currents. Given this representation we can compute an atlas as a mean representation of the population and the main modes of variation around this mean. The modes are computed using principal component analysis (PCA) and applying standard correlation analysis to these allows to correlate shape features with clinical indices. Beyond this, we can compute a generative model of growth using partial least squares regression (PLS) and canonical correlation analysis (CCA). In this chapter, we investigate a clinical application of these statistical techniques on the shape of the heart for patients with repaired Tetralogy of Fallot (rToF), a severe congenital heard defect that requires surgical repair early in infancy. We relate the shape to the severity of the pathology and we build a bi-ventricular growth model of the rToF heart from cross-sectional data which gives insights about the evolution of the disease. Relation between this chapter and our class: This chapter is describing an extension of the mathematical techniques that are described in the course “computational anatomy and physiology” for the analysis of the shape of anatomical organs. It is showing how the analysis of organ deformation across patients can be used to model the impact of remodeling with the hope to get more insight on the pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, atlas is always taken in the sense of template and not in the sense of the atlas of differential geometry.

  2. 2.

    We use the term “geodesic shooting” to define the integration of the Euler-Lagrange equations, which plays the role of the exponential map in Riemannian geometry.

References

  1. H. Akaike. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6):716–723, 1974.

    Google Scholar 

  2. F.L. Bookstein. The Measurement of Biological Shape and Shape Change, volume 24 of Lecture Notes in Biomathematics. Springer-Verlag, 1978.

    Google Scholar 

  3. F.L. Bookstein. Size and shape spaces for landmark data in two dimensions (with discussion). Statistical Science, 1:181–242, 1986.

    Google Scholar 

  4. I.L. Dryden and K.V. Mardia. Theoretical and distributional aspects of shape analysis. In Probability Measures on Groups, X (Oberwolfach, 1990), pages 95–116, New York, 1991. Plenum.

    Google Scholar 

  5. D. DuBois and E. DuBois. The measurement of the surface area of man. Archives of Internal Medicine, 15(5), 1915.

    Google Scholar 

  6. S. Durrleman. Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Thèse de sciences (phd thesis), Université de Nice-Sophia Antipolis, 2010.

    Google Scholar 

  7. J. Glaunès. Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et lanatomie numérique. Thèse de sciences, Université Paris 13, November 2005.

    Google Scholar 

  8. U. Grenander. General Pattern Theory: A Mathematical Study of Regular Structures. Oxford University Press Inc., New York, NY., 1993.

    Google Scholar 

  9. J. Hoffman and S. Kaplan. The incidence of congenital heart disease. Journal of the American College of Cardiology, 39(12):1890–1900, 2002.

    Google Scholar 

  10. H. Hufnagel. A probabilistic framework for point-based shape modeling in medical image analysis. Phd thesis, University of Lübeck, 2010.

    Google Scholar 

  11. P. Fletcher J. Cates and R. Whitaker. A hypothesis testing framework for high-dimensional shape models. In In MICCAI Workshop on Mathematical Foundations of Computational Anatomy, page 170, 2008.

    Google Scholar 

  12. D.G. Kendall. A survey of the statistical theory of shape (with discussion). Statistical Science, 4:87–120, 1989.

    Google Scholar 

  13. D.G. Kendall, Shape manifolds, Procrustean metrics, and complex projective spaces, Bull. London Math. Soc, 16 (1984), 81–121.

    Google Scholar 

  14. H. Le and D.G. Kendall. The Riemannian structure of Euclidean shape space: a novel environment for statistics. Annals of Statistics, 21:1225–1271, 1993.

    Google Scholar 

  15. L. Younes M. Vaillant, M.I. Miller and A. Trouvé. Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23(Supp. 1):S161–S169, 2004.

    Google Scholar 

  16. S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993.

    Google Scholar 

  17. T. Mansi. Image-Based Physiological and Statistical Models of the Heart, Application to Tetralogy of Fallot. Thèse de sciences (phd thesis), Ecole Nationale Supérieure des Mines de Paris, 2010.

    Google Scholar 

  18. A. Trouvé M.F. Beg, M.I. Miller and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. Journal of Computer Vision, 61(2):139–157, 2005.

    Google Scholar 

  19. A. Trouvé M.I. Miller and L. Younes. On the metrics and Euler-Lagrange equations of computational anatomy. Annual Re-view of Biomedical Engineering, pages 375–405, 2003.

    Google Scholar 

  20. M.I. Miller and L. Younes. Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41(1/2):61–84, 2001.

    Google Scholar 

  21. J. T. Ratnanather R. A. Poldrack Th. E. Nichols J. E. Taylor P. M. Thompson, M. I. Miller and K. J. Worsley, editors. Mathematics in Brain Imaging, volume 45 of NeuroImage, special issue. Springer, March 2004.

    Google Scholar 

  22. X. Pennec. Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1):127–154, July 2006. A preliminary appeared as Inria RR-5093, January 2004.

    Google Scholar 

  23. X. Pennec. Statistical computing on manifolds: from riemannian geometry to computational anatomy. In Emerging Trends in Visual Computing, volume 5416 of LNCS, pages 347–386. Springer, 2008.

    Google Scholar 

  24. Y. Amit S. Allassonnire and A. Trouv. Towards a coherent statistical framework for dense deformable template estimation. Journal Of The Royal Statistical Society Series B, 69(1): 3–29, 2007.

    Google Scholar 

  25. A. Trouvé S. Durrleman, X. Pennec and N. Ayache. A forward model to build unbiased atlases from curves and surfaces. In X. Pennec and S. Joshi, editors, Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA-2008), September 2008.

    Google Scholar 

  26. A. Trouvé S. Durrleman, X. Pennec and N. Ayache. Statistical models on sets of curves and surfaces based on currents. Medical Image Analysis, 13(5):793–808, 2009.

    Google Scholar 

  27. A. Trouvé G. Gerig S. Durrleman, X. Pennec and N. Ayache. Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In Medical Image Computing and Computer-Assisted Intervention (MICCAI’09), Part I, volume 5761 of Lecture Notes in Computer Science, pages 297–304, London, UK, 2009. Springer.

    Google Scholar 

  28. A. Trouvé P. Thompson S. Durrleman, X. Pennec and N. Ayache. Inferring brain variability from diffeomorphic deformations of currents: an integrative approach. Medical Image Analysis, 12(5):626–637, 2008.

    Google Scholar 

  29. A. Srivastava S. H. Joshi, D. Kaziska and W. Mio. Riemannian structures on shape spaces: A framework for statistical inferences. In Hamid Krim and Anthony Yezzi, editors, Statistics and Analysis of Shapes, Modeling and Simulation in Science, Engineering and Technology, pages 313–333. Birkhäuser Boston, 2006.

    Google Scholar 

  30. A. Srivastava S. H. Joshi, E. Klassen and I. Jermyn. A novel representation for riemannian analysis of elastic curves in rn. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 0:1–7, 2007.

    Google Scholar 

  31. A. Srivastava S. H. Joshi, E. Klassen and I. Jermyn. Removing shape-preserving transformations in square-root elastic (sre) framework for shape analysis of curves. In EMMCVPR’07, pages 387–398, 2007.

    Google Scholar 

  32. M. Jomier S. Joshi, B. Davis and G. Gerig. Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23(Supplement 1):S151–S160, 2004. Mathematics in Brain Imaging.

    Google Scholar 

  33. C.G. Small. The Statistical Theory of Shapes. Springer series in statistics. Springer, 1996.

    Google Scholar 

  34. B. Bernhardt M. Sermesant H. Delingette I. Voigt T. Mansi, S. Durrleman, J. Blanc Y. Boudjemline X. Pennec P. Lurz, A. M. Taylor, and N. Ayache. A statistical model of right ventricle in tetralogy of fallot for prediction of remodelling and therapy planning. In Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI’09), volume 5761 of Lecture Notes in Computer Science, pages 214–221. Springer, 2009.

    Google Scholar 

  35. B. Leonardi X. Pennec S. Durrleman M. Sermesant H. Delingette A. M. Taylor Y. Boudjemline G. Pongiglione T. Mansi, I. Voigt and N. Ayache. A statistical model for quantification and prediction of cardiac remodelling: Application to tetralogy of fallot. IEEE Transactions on Medical Images, 2011.

    Google Scholar 

  36. R Development Core Team. R: A language and environment for statistical compu- ting. R Foundation for Statistical Computing, Vienna, Austria, Online. Available: http://www.R-project.org, 2009.

  37. W. D’Arcy Thompson. On Growth and Form. Cambridge University Press, England., 1917.

    Google Scholar 

  38. A. Trouvé. Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision, 28(3):213–221, 1998.

    Google Scholar 

  39. M. Vaillant and J. Glaunes. Surface matching via currents. In Proc. of IPMI’05, pages 381–392, 2005.

    Google Scholar 

  40. A. Srivastava W. Mio and S. H. Joshi. On shape of plane elastic curves. International Journal of Computer Vision, pages 307–324, 2007.

    Google Scholar 

  41. B. Georgescu M. Scheuering Y. Zheng, A. Barbu and D. Comaniciu. Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features. IEEE Trans. on Medical Imaging, 27(11):1668–1681, 2008.

    Google Scholar 

Download references

Acknowledgements

The computational tools used in this chapter were originally developed within the context of the European FP6 project Health-e-Child (http://www.health-e-child.org/). The software was made available to the community in collaboration with the EU network of Excellence Virtual Physiological Human (http://www.vph-noe.eu/). The extension to the analysis of the bi-ventricular shape of the heart in rToF was performed in the context of the European ITEA2 Care4Me project (www.care4me.eu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin McLeod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McLeod, K., Mansi, T., Sermesant, M., Pongiglione, G., Pennec, X. (2013). Statistical Shape Analysis of Surfaces in Medical Images Applied to the Tetralogy of Fallot Heart. In: Cazals, F., Kornprobst, P. (eds) Modeling in Computational Biology and Biomedicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31208-3_5

Download citation

Publish with us

Policies and ethics