Skip to main content

Electric Field and Current Effects on Sintering

  • Chapter
  • First Online:
Sintering

Part of the book series: Engineering Materials ((ENG.MAT.,volume 35))

Abstract

The goal of consolidating powders to achieve high densities at lower temperatures and with a small grain size has motivated considerable efforts in the search for methods to activate the sintering process. Enhancement of the consolidation process has been attempted through various approaches including mechanical activation of the powders, the addition of sintering aids, and the use of electromagnetic fields. The latter approach has received considerable attention in recent years, largely due to the widespread use of devices utilizing current and pressure to consolidate powders. The Spark Plasma Sintering method (also known by other names) has seen a remarkable increase in its utilization over the past two decades. This was largely due to the many significant, and in some cases, unique accomplishments. In this chapter we will focus then on the role of the electric field in sintering with emphasis on recent observations, particularly those pertaining to the consolidation of nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Several names have been proposed for SPS. The diversity of names comes from the limit understanding of the process mechanisms. Among the names one will find Current Activated and Pressed Assisted Densification (CAPAD), Electric Field Assisted Sintering (EFAS), Pulsed Electric Current Sintering (PECS), and others. We will use SPS in this chapter as is the most accepted for historical reasons.

  2. 2.

    Effective electrical mobility is defined by the net movement in the direction of the field, disregarding the random movement of the charged specie.

References

  1. Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M.: J. Mater. Sci. 41(3), 763–777 (2006)

    Article  CAS  Google Scholar 

  2. Munir, Z.A., Quach, D.V., Ohyanagi, M.: J. Am. Ceram. Soc. 94(1), 1–19 (2011)

    Article  CAS  Google Scholar 

  3. Cologna, M., Rashkova, B., Raj, R.: J. Am. Ceram. Soc. 93(11), 3556–3559 (2010)

    Article  CAS  Google Scholar 

  4. Yang, D., Conrad, H.: Mat. Sci. Eng. A-Struct. 528(3), 1221–1225 (2011)

    Article  Google Scholar 

  5. Frei, J.M., Anselmi-Tamburini, U., Munir, Z.A.: J. Appl. Phys. 101(11), 114914/114911–114918 (2007)

    Google Scholar 

  6. Jeong, J.W., Han, J.H., Kim, D.Y.: J. Am. Ceram. Soc. 83(4), 915–918 (2000)

    Article  CAS  Google Scholar 

  7. Tokita, M.: Ceram. Trans. 194, 51–59 (2006)

    CAS  Google Scholar 

  8. Misawa, T., Shikani, N., Kawakami, Y., Enjoji, T., Ohtsu, Y.: Mater. Sci. Forum 638–642, 2109–2114 (2010)

    Article  Google Scholar 

  9. Hulbert, D.M., Anders, A., Dudina, D.V., Andersson, J., Jiang, D., Unuvar, C., Anselmi-Tamburini, U., Lavernia, E.J., Mukherjee, A.K.: J. Appl. Phys. 104(3), 033305/033301–033307 (2008)

    Google Scholar 

  10. Misawa, T., Shikatani, N., Kawakami, Y., Enjoji, T., Ohtsu, Y., Fujita, H.: J. Mater. Sci. 44(6), 1641–1651 (2009)

    Article  CAS  Google Scholar 

  11. Nanko, M., Maruyama, T., Tomino, H.: J. Jpn. Inst. Met. 63(7), 917–923 (1999)

    CAS  Google Scholar 

  12. Mackenzie, K.J.D., Banerjee, R.K., Kasaai, M.R.: J. Mater. Sci. 14(2), 333–338 (1979)

    Article  CAS  Google Scholar 

  13. Mackenzie, K.J.D., Banerjee, R.K.: J. Mater. Sci. 14(2), 339–344 (1979)

    Article  CAS  Google Scholar 

  14. Mackenzie, K.J.D., Ryan, M.J.: J. Mater. Sci. 16(3), 579–588 (1981)

    Article  CAS  Google Scholar 

  15. Brown, I.W.M., Mackenzie, K.J.D.: J. Mater. Sci. 17(12), 3663–3671 (1982)

    Article  CAS  Google Scholar 

  16. Korte, C., Ravishankar, N., Carter, C.B., Schmalzried, H.: Solid State Ion. 148(1–2), 111–121 (2002)

    Article  CAS  Google Scholar 

  17. Korte, C., Franz, B., Hesse, D.: Phys. Chem. Chem. Phys. 7(2), 413–420 (2005)

    Article  CAS  Google Scholar 

  18. Friedman, J.R., Garay, J.E., Anselmi-Tamburini, U., Munir, Z.A.: Intermetallics 12(6), 589–597 (2004)

    Article  CAS  Google Scholar 

  19. Garay, J.E., Anselmi-Tamburini, U., Munir, Z.A.: Acta Mater. 51(15), 4487–4495 (2003)

    Article  CAS  Google Scholar 

  20. Bertolino, N., Garay, J., Anselmi-Tamburini, U., Munir, Z.A.: Philos. Mag. B 82(8), 969–985 (2002)

    CAS  Google Scholar 

  21. Bertolino, N., Garay, J., Anselmi-Tamburini, U., Munir, Z.A.: Scripta Mater. 44(5), 737–742 (2001)

    Article  CAS  Google Scholar 

  22. Chen, W., Anselmi-Tamburini, U., Garay, J.E., Groza, J.R., Munir, Z.A.: Mater. Sci. Eng. A-Struct. 394(1–2), 132–138 (2005)

    Article  Google Scholar 

  23. Kondo, T., Yasuhara, M., Kuramoto, T., Kodera, Y., Munir, Z.A., Ohyanagi, M.: J. Mater. Sci. 43(19), 6400–6405 (2008)

    Article  CAS  Google Scholar 

  24. Kondo, T., Kuramoto, T., Kodera, Y., Ohyanagi, M., Munir, Z.A.: J. Jpn. Soc. Powder Metall. 55, 643–650 (2008)

    Article  CAS  Google Scholar 

  25. Kondo, T., Kuramoto, T., Kodera, Y., Ohyanagi, M., Munir, Z.A.: J. Ceram. Soc. Jpn. 116(1359), 1187–1192 (2008)

    Article  CAS  Google Scholar 

  26. Zhao, J., Garay, J.E., Anselmi-Tamburini, U., Munir, Z.A.: J. Appl. Phys. 102(11), 114902/114901–114907 (2007)

    Google Scholar 

  27. Choi, J.I., Han, J.H., Kim, D.Y.: J. Am. Ceram. Soc. 86(2), 347–350 (2003)

    Article  CAS  Google Scholar 

  28. Jin, H.R., Yoon, S.H., Lee, J.H., Lee, J.H., Hwang, N.M., Kim, D.Y., Han, J.H.: J. Am. Ceram. Soc. 87(9), 1747–1752 (2004)

    Article  CAS  Google Scholar 

  29. Kliewer, K.L., Koehler, J.S.: Phys. Rev. 140(4A), 1226–1240 (1965)

    Google Scholar 

  30. Kliewer, K.L.: Phys. Rev. 140(4A), 1241–1246 (1965)

    Google Scholar 

  31. Schwensfeir, R.J., Elbaum, C.: J. Phys. Chem. Solids. 26(4), 781–782 (1965)

    Google Scholar 

  32. Munir, Z.A., Nguyen, T.T.: Philos. Mag. A 47(1), 105–117 (1983)

    Article  CAS  Google Scholar 

  33. Munir, Z.A., Yeh, A.A.: Philos. Mag. A 56(1), 63–71 (1987)

    Article  CAS  Google Scholar 

  34. Machida, C.A., Munir, Z.A.: J. Cryst. Growth 68(3), 665–670 (1984)

    Article  CAS  Google Scholar 

  35. Kingery, W.D.: J. Am. Ceram. Soc. 57(1), 1–8 (1974)

    Article  CAS  Google Scholar 

  36. Yang, D., Conrad, H.: J. Mater. Sci. 43(13), 4475–4482 (2008)

    Article  CAS  Google Scholar 

  37. Yang, D., Conrad, H.: Scripta Mater. 36(12), 1431–1435 (1997)

    Article  CAS  Google Scholar 

  38. Ghosh, S., Chokshi, A.H., Lee, P., Raj, R.: J. Am. Ceram. Soc. 92(8), 1856–1859 (2009)

    Article  CAS  Google Scholar 

  39. Quach, D.V., Avila-Paredes, H., Kim, S., Martin, M., Munir, Z.A.: Acta Mater. 58(15), 5022–5030 (2010)

    Article  CAS  Google Scholar 

  40. Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., Wu, D.T.: Acta Mater. 47(7), 2143–2152 (1999)

    Article  CAS  Google Scholar 

  41. Kanters, J., Eisele, U., Boder, H., Rodel, J.: Adv. Eng. Mater. 3(3), 158–162 (2001)

    Article  CAS  Google Scholar 

  42. Tekeli, S., Erdogan, M., Aktas, B.: Ceram. Int. 30(8), 2203–2209 (2004)

    Article  CAS  Google Scholar 

  43. Dahl, P., Kaus, I., Zhao, Z., Johnsson, M., Nygren, M., Wiik, K., Grande, T., Einarsrud, M.A.: Ceram. Int. 33(8), 1603–1610 (2007)

    Article  CAS  Google Scholar 

  44. Yang, D., Conrad, H.: Scripta Mater. 63(3), 328–331 (2010)

    Article  CAS  Google Scholar 

  45. Yang, D., Raj, R., Conrad, H.: J. Am. Ceram. Soc. 93(10), 2935–2937 (2010)

    Article  CAS  Google Scholar 

  46. Cologna, M., Prette, A.L.G., Raj, R.: J. Am. Ceram. Soc. 94(2), 316–319 (2011)

    Article  CAS  Google Scholar 

  47. Cologna, M., Raj, R.: J. Am. Ceram. Soc. 94(2), 391–395 (2011)

    Article  CAS  Google Scholar 

  48. Hwang, S.-L., Chen, I.-W.: J. Am. Ceram. Soc. 73(11), 3269–3277 (1990)

    Article  CAS  Google Scholar 

  49. Fu, Z., Wang, K., Tan, T., Xiong, Y., He, D., Wang, Y., Munir, Z.A.: Ceram. Trans. 194, 3–21 (2006)

    CAS  Google Scholar 

  50. Togofuku, N., Kuramoto, T., Imai, T., Ohyanagi, M., Munir, Z.A.: J. Mater. Sci. 47, 2201–2205 (2012)

    Article  Google Scholar 

  51. Shearwood, C., Ng, H.B.: Spark plasma sintering of wire exploded tungsten nano-powder. In: Hariz, A.J., Varadan, V.K. (eds.) pp. 67981B-67981–67910, Canberra, Australia (2007)

    Google Scholar 

  52. Kim, D.Y., Gladel, G., Accary, A.: Morphological study of tungsten powder obtained by hydrogen reduction of tungsten trioxide powder at 700–900 C. In: European Symposium on Powder Metallurgy, vol. 2, pp. 185–193 (1978)

    Google Scholar 

  53. Asoka-Kumar, P., O’Brien, K., Lynn, K.G.: Appl. Phys. Lett. 68(3), 406–408 (1996)

    Article  CAS  Google Scholar 

  54. Liao, C.-N., Wu, L.-C.: Appl. Phys. Lett. 95 052112/052111–052113 (2009)

    Google Scholar 

  55. Garay, J.E., Glade, S.C., Anselmi-Tamburini, U., Asoka-Kumar, P., Munir, Z.A.: Appl. Phys. Lett. 85(4), 573–575 (2004)

    Article  CAS  Google Scholar 

  56. Munir, Z.A., Schmalzried, H.: J. Mater. Synth. Process. 1(1), 3–16 (1993)

    CAS  Google Scholar 

  57. Holland, T.B., Loffler, J.F., Munir, Z.A.: J. Appl. Phys. 95(5), 2896–2899 (2004)

    Article  CAS  Google Scholar 

  58. Seo, W.S., Pai, C.H., Koumoto, K., Yanagida, H.: Nippon Seram Kyo. Gak. 99(6), 443–447 (1991)

    Article  CAS  Google Scholar 

  59. Sommer, M., Schubert, W.D., Zobetz, E., Warbichler, P.: Int. J. Refract. Met. Hard Mater 20(1), 41–50 (2002)

    Article  CAS  Google Scholar 

  60. Toyofuku, N., Nishimoto, M., Arayama, K., Kodera, Y., Ohyanagi, M., Munir, Z.A.: Ceram. Trans. (ACS) 212, 31–40 (2010)

    CAS  Google Scholar 

  61. Toyofuku, N., Yamasaki, N., Kodera, Y., Ohyanagi, M., Munir, Z.A.: J. Ceram. Soc. Jpn. 117(2), 189–193 (2009)

    Article  CAS  Google Scholar 

  62. Yamamoto, T., Ishibashi, N., Toyofuku, N., Kodera, Y., Ohyanagi, M., Munir, Z.A.: Consolidation of h-BN with disorder-order transformation. Innovative Processing and Synthesis of Ceramics, Glasses and Composites, Materials Science and Technology (MS&T) 2006: Processing, pp. 531–538 (2006)

    Google Scholar 

  63. Kodera, Y., Yamamoto, T., Toyofuku, N., Ohyanagi, M., Munir, Z.A.: J. Mater. Sci. 41(3), 727–732 (2006)

    Article  CAS  Google Scholar 

  64. Kodera, Y., Kotera, H., Yamamoto, T., Ohyanagi, M., Munir, Z.A.: Phys. Stat. Solid C 3, 2876–2879 (2006)

    Article  CAS  Google Scholar 

  65. Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Ohyanagi, M., Munir, Z.A.: J. Am. Ceram. Soc. 87, 1436–1441 (2004)

    Article  CAS  Google Scholar 

  66. Ohyanagi, M., Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Munir, Z.A.: Scripta Mater. 50(1), 111–114 (2004)

    Article  CAS  Google Scholar 

  67. Puin, W., Rodewald, S., Ramlau, R., Heitjans, P., Maier, J.: Solid State Ion. 131(1–2), 159–164 (2000)

    Article  CAS  Google Scholar 

  68. Joo, J.H., Choi, G.M.: Solid State Ion. 177(11–12), 1053–1057 (2006)

    Article  CAS  Google Scholar 

  69. Zhang, Y.W., Jin, S., Yang, Y., Li, G.B., Tian, S.J., Jia, J.T., Liao, C.S., Yan, C.H.: Appl. Phys. Lett. 77(21), 3409–3411 (2000)

    Article  CAS  Google Scholar 

  70. Gleiter, H.: Acta Mater. 48(1), 1–29 (2000)

    Article  CAS  Google Scholar 

  71. Chadwick, A.V., Savin, S.L.P.: Solid State Ion. 177(35–36), 3001–3008 (2006)

    Article  CAS  Google Scholar 

  72. Maier, J.: Solid State Ion. 131(1–2), 13–22 (2000)

    Article  CAS  Google Scholar 

  73. Martin, M.C., Mecartney, M.L.: Solid State Ion. 161(1–2), 67–79 (2003)

    Article  CAS  Google Scholar 

  74. Upadhyaya, D.D., Ghosh, A., Gurumurthy, K.R., Prasad, R.: Ceram. Int. 27(4), 415–418 (2001)

    Article  CAS  Google Scholar 

  75. Zhang, C., Zhang, G., Leparoux, S., Liao, H., Li, C.X., Li, C.J., Coddet, C.J.: Eur. Ceram. Soc. 28(13), 2529–2538 (2008)

    Article  CAS  Google Scholar 

  76. Chen, X.J., Khor, K.A., Chan, S.H., Yu, L.G.: Mater. Sci. Eng. A-Struct. 341(1–2), 43–48 (2003)

    Article  Google Scholar 

  77. Trunec, M., Maca, K., Shen, Z.: Scripta Mater. 59(1), 23–26 (2008)

    Article  CAS  Google Scholar 

  78. Kim, S., Anselmi-Tambtirini, U., Park, H.J., Martin, M., Munir, Z.A.: Adv. Mater. 20(3), 556–559 (2008)

    Google Scholar 

  79. Quach, D.V., Kim, S., De Souza, R.A., Martin, M., Munir, Z.A.: Key Eng. Mater. 484, 107–116 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuhair A. Munir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munir, Z.A., Quach, D.V., Ohyanagi, M. (2012). Electric Field and Current Effects on Sintering. In: Castro, R., van Benthem, K. (eds) Sintering. Engineering Materials, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31009-6_7

Download citation

Publish with us

Policies and ethics