Skip to main content

10 Context-Dependent Interaction Hierarchies and the Organization of Ectomycorrhizal Fungal Communities

  • Chapter
  • First Online:
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

Interspecific interactions, such as competition, occur among members of ectomycorrhizal fungal communities and serve as structuring forces in the development and maintenance of such communities. Under a stable set of environmental conditions, competitive hierarchies (or, in the more general case, interaction hierarchies) become established, resulting in the expression of dominance hierarchies. However, interaction hierarchies are context-dependent; competitive rankings among species, for example, depend on environmental conditions. Context-dependency occurs because of species-specific tolerances to and preferences (traits) for environmental conditions. Therefore, dominance within communities shifts from one species to another as environmental conditions shift in time or space. Phenomena such as habitat partitioning and host specificity, as well as community responses to disturbance and shifts in community structure along environmental gradients, can be explained by the context-dependence of interaction hierarchies among ectomycorrhizal fungi. Understanding the context-dependence of interaction hierarchies in terms of the relationships between species traits and environmental heterogeneity can elucidate general principles involved in the structuring of biological communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (1990) Studies on ectomycorrhizae XXIV – ectomycorrhizae of Chroogomphus helveticus and C. rutilus (Gomphidiaceae, Basidiomycetes) and their relationship to those of Suillus and Rhizopogon. Nova Hedwigia 50:1–63

    Google Scholar 

  • Agerer R (1991) Studies on ectomycorrhizae XXXIV – mycorrhizae of Gomphidius glutinosus and of G. roseus with some remarks on Gomphidiaceae (Basidiomycetes). Nova Hedwigia 53:127–170

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    PubMed  Google Scholar 

  • Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206

    PubMed  Google Scholar 

  • Benecke U, Göbl F (1974) The influence of different mycorrhizae on growth, nutrition and gas-exchange of Pinus mugo seedlings. Plant Soil 40:21–32

    CAS  Google Scholar 

  • Bengtsson J, Fagerstrom T, Rydin H (1994) Competition and coexistence in plant communities. Trends Ecol Evol 9:246–250

    PubMed  CAS  Google Scholar 

  • Bledsoe CS, Tennyson K, Lopushinsky W (1982) Survival and growth of outplanted Douglas-fir seedlings inoculated with mycorrhizal fungi. Can J For Res 12:720–723

    Google Scholar 

  • Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20:25–38

    PubMed  Google Scholar 

  • Brearley FQ (2006) Differences in the growth and ectomycorrhizal community of Dryobalanops lanceolata (Dipterocarpaceae) seedlings grown in ultramafic and non-ultramafic soils. Soil Biol Biochem 38:3407–3410

    CAS  Google Scholar 

  • Brearley FQ, Scholes JD, Press MC, Palfner G (2007) How does light and phosphorus fertilisation affect the growth and ectomycorrhizal community of two contrasting dipterocarp species? Plant Ecol 192:237–249

    Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73

    CAS  Google Scholar 

  • Buchalo AS, Å aÅ¡ek V, Zakordonec OA (1989) Scanning electron microscopic study of vegetative mycelium of higher basidiomycetes. Folia Microbiol 34:146–150

    Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245

    PubMed  Google Scholar 

  • Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Google Scholar 

  • Cavender-Bares J, Izzo A, Robinson R, Lovelock CE (2009) Changes in ectomycorrhizal community structure on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza 19:133–142

    PubMed  CAS  Google Scholar 

  • Chakravarty C, Peterson RL, Ellis BE (1991) Interaction between the ectomycorrhizal fungus Paxillus involutus, damping-off fungi and Pinus resinosa seedlings. J Phytopathol 132:207–218

    Google Scholar 

  • Chen YL, Brundrett MC, Dell B (2000) Effects of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–555

    Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67:29–39

    Google Scholar 

  • Conn C, Dighton J (2000) Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489–496

    CAS  Google Scholar 

  • Courty PE, Franc A, Pierrat JC, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801

    PubMed  CAS  Google Scholar 

  • Cullings K, Raleigh C, Vogler DR (2005) Effects of severe dwarf mistletoe infection on the ectomycorrhizal community of a Pinus contorta stand in Yellowstone Park. Can J Bot 83:1174–1180

    Google Scholar 

  • de Román M, de Miguel AM (2005) Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period. Mycorrhiza 15:471–482

    PubMed  Google Scholar 

  • DeBellis T, Kernaghan G, Bradley R, Widden P (2006) Relationships between stand composition and ectomycorrhizal community structure in boreal mixed-wood forests. Microbial Ecol 52:114–126

    CAS  Google Scholar 

  • Detman JR, van de Kamp BJ (2001) The population structure of Armillaria ostoyae and Armillaria sinapina in the central interior of British Columbia. Can J Bot 79:600–611

    Google Scholar 

  • Di Marino E, Montecchio L, Scattolin L, Abs C, Agerer R (2009) The ectomycorrhizal community structure in European beech forests differing in coppice shoot age and stand features. J For 107:250–259

    Google Scholar 

  • Dickie I, Koide R, Stevens C (1998) Tissue density and growth response of ectomycorrhizal fungi to nitrogen source and concentration. Mycorrhiza 8:145–148

    CAS  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    CAS  Google Scholar 

  • Dighton J, Poskitt JM, Howard DM (1986) Changes in occurrence of basidiomycete fruit bodies during forest stand development: with specific reference to mycorrhizal species. Trans Br Mycol Soc 87:163–171

    Google Scholar 

  • Duchesne LC, Peterson R, Ellis BE (1988) Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66:558–562

    Google Scholar 

  • Durall DM, Gamiet S, Simard SW, Kudrna L, Sakakibara SM (2006) Effects of clearcut logging and tree species composition on the diversity and community composition of epigeous fruit bodies formed by ectomycorrhizal fungi. Can J Bot 84:966–980

    CAS  Google Scholar 

  • Fleming LV (1985) Experimental study of sequences of ectomycorrhizal fungi on birch (Betula sp.) seedling root systems. Soil Biol Biochem 17:591–600

    Google Scholar 

  • Fransson PM, Taylor AFS, Finlay RD (2000) Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiol 20:599–606

    PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Google Scholar 

  • Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79:1562–1572

    Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    PubMed  Google Scholar 

  • Goodman DM, Trofymow JA (1998) Distribution of ectomycorrhizas in microhabitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biol Biochem 30:2127–2138

    CAS  Google Scholar 

  • Grace JB, Wetzel RG (1981) Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. Am Nat 118:463–474

    Google Scholar 

  • Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1051–1062

    Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Google Scholar 

  • Heinonsalo J, Koskiahde I, Sen R (2007) Scots pine bait seedling performance and root colonizing ectomycorrhizal fungal community dynamics before and during the 4 years after forest clear-cut logging. Can J For Res 37:415–429

    Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    PubMed  CAS  Google Scholar 

  • Högberg P, Högberg M, Göttlicher S, Betson N, Keel S, Metcalfe D, Campbell C, Schindlbacher A, Hurry V, Lundmark T et al (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Google Scholar 

  • Iotti M, Lancellotti E, Hall I, Zambonelli A (2010) The ectomycorrhizal community in natural Tuber borchii grounds. FEMS Microbiol Ecol 72:250–260

    PubMed  CAS  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440

    PubMed  CAS  Google Scholar 

  • Ishida TA, Nara K, Tanaka M, Kinoshita A, Hogetsu T (2008) Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession. New Phytol 180:491–500

    PubMed  Google Scholar 

  • Jumpponen A, Egerton-Warburton LM (2005) Mycorrhizal fungi in successional environments: a community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. Taylor & Francis, Boca Raton, pp 139–168

    Google Scholar 

  • Keizer P, Arnolds E (1994) Succession of ectomycorrhizal fungi in roadside verges planted with common oak (Quercus robur L.) in Drenthe, The Netherlands. Mycorrhiza 4:147–159

    Google Scholar 

  • Kennedy P (2010) Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions. New Phytol 187:895–910

    PubMed  Google Scholar 

  • Kennedy PG, Bruns TD (2005) Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings. New Phytol 166:631–638

    PubMed  Google Scholar 

  • Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107

    PubMed  Google Scholar 

  • Klironomos J, Hart M (2001) Animal nitrogen swap for plant carbon. Nature 410:651–652

    PubMed  CAS  Google Scholar 

  • Koide RT, Xu B, Sharda J, Lekberg Y, Ostiguy N (2005) Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 165:305–316

    PubMed  Google Scholar 

  • Koide RT, Shumway DL, Xu B, Sharda JN (2007) On temporal partitioning of a community of ectomycorrhizal fungi. New Phytol 174:420–429

    PubMed  Google Scholar 

  • Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68:45–55

    Google Scholar 

  • Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824

    PubMed  CAS  Google Scholar 

  • Kranabetter J, Friesen J (2002) Ectomycorrhizal community structure on western hemlock (Tsuga heterophylla) seedlings transplanted from forests into openings. Can J Bot 80:861–868

    Google Scholar 

  • Kranabetter J, Wylie T (1998) Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can J Bot 76:189–196

    Google Scholar 

  • Krywolap GN (1964) Cenococcum graniforme antibiotics: elaboration in pure culture and during mycorrhizal association. PhD thesis, Pennsylvania State University, University Park

    Google Scholar 

  • Lamb EG, Kembel SW, Cahill JF (2009) Shoot, but not root, competition reduces community diversity in experimental mesocosms. J Ecol 97:155–163

    Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    PubMed  CAS  Google Scholar 

  • Lapeyrie F, Chilvers G (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100:93–104

    Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192

    Google Scholar 

  • Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71–82

    PubMed  CAS  Google Scholar 

  • Leski T, Aucina A, Skridaila A, Pietras M, Riepsas E, Rudawska M (2010) Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. Mycorrhiza 20:473–481

    PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2003) Root colonization dynamics of two ectomycorrhizal fungi of contrasting life history strategies are mediated by addition of organic nutrient patches. New Phytol 159:141–151

    Google Scholar 

  • Lilleskov EA, Fahey T, Lovett G (2001) Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecol Appl 11:397–410

    Google Scholar 

  • Lilleskov EA, Fahey T, Horton T (2002a) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Google Scholar 

  • Lilleskov EA, Hobbie E, Fahey TJ (2002b) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231

    CAS  Google Scholar 

  • Lilleskov EA, Wargo PM, Vogt KA, Vogt DJ (2008) Mycorrhizal fungal community relationship to root nitrogen concentration over a regional atmospheric nitrogen deposition gradient in the northeastern USA. Can J For Res 38:1260–1266

    CAS  Google Scholar 

  • Malajczuk N (1988) Interaction between Phytophthora cinnamomi zoospores and micro-organisms on non-mycorrhizal and ectomycorrhizal roots of Eucalyptus marginata. Trans Br Mycol Soc 90:375–382

    Google Scholar 

  • Malajczuk N, Hingston FJ (1981) Ectomycorrhizae associated with Jarrah. Austral J Bot 29:453–462

    Google Scholar 

  • Mamoun M, Olivier J (1993a) Competition between Tuber melanosporum and other ectomycorrhizal fungi under two irrigation regimes I. Competition with Tuber brumale. Plant Soil 149:211–218

    Google Scholar 

  • Mamoun M, Olivier JM (1993b) Competition between Tuber melanosporum and other ectomycorrhizal fungi under two irrigation regimes. II. Comparison of soils artificially infested with T. melanosporum and T. brumale. Plant Soil 149:211–218

    Google Scholar 

  • Matsuda Y (2007) Studies on ectomycorrhizal community structure in an Abies firma forest and techniques for restoring natural ecosystems with mycorrhizal associations. Nippon Kingakukai Kaiho 48:32–41

    Google Scholar 

  • Molina R, Massicotte HB, Trappe JM (1992) Ecological role of specificity phenomena in ectomycorrhizal plant communities: potentials for interplant linkages and guild development. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 106–112

    Google Scholar 

  • Mosca E, Montecchio L, Sella L, Garbaye J (2007) Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest (Quercus robur L.). For Ecol Manage 244:129–140

    Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003a) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206

    Google Scholar 

  • Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003b) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756

    CAS  Google Scholar 

  • Niemi K, Häggman H, Sarjala T (2002) Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree Physiol 22:373–381

    PubMed  CAS  Google Scholar 

  • O’Dell TE, Ammirati JF, Schreiner EG (1999) Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone. Can J Bot 77:1699–1711

    Google Scholar 

  • Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol Ecol 27:195–205

    CAS  Google Scholar 

  • Olsson PA, Münzenberger B, Mahmood S, Erland S (2000) Molecular and anatomical evidence for a three-way association between Pinus sylvestris and the ectomycorrhizal fungi Suillus bovinus and Gomphidius roseus. Mycol Res 104:1372–1378

    Google Scholar 

  • Pena R, Offermann C, Simon J, Naumann PS, Gessler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl Environ Microbiol 76:1831–1841

    PubMed  CAS  Google Scholar 

  • Pestaña M, Santolamazza-Carbone S (2011) Defoliation negatively affects plant growth and the ectomycorrhizal community of Pinus pinaster in Spain. Oecologia 165:723–733

    PubMed  Google Scholar 

  • Pianka ER (1992) The state of the art in community ecology. In: Adler K (ed) Herpetology: current research on the biology of amphibians and reptiles. Proceedings of the first world congress of herpetology, Society for the Study of Amphibians and Reptiles, Oxford, OH, pp 141–162

    Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    CAS  Google Scholar 

  • Rygiewicz PT, Martin KJ, Tuininga AR (2000) Morphotype community structure of ectomycorrhizas on Douglas fir (Pseudotsuga menziesii Mirb. Franco) seedlings grown under elevated atmospheric CO2 and temperature. Oecologia 124:299–308

    Google Scholar 

  • Sagara N (1995) Association of ectomycorrhizal fungi with decomposed animal wastes in forest habitats a cleaning symbiosis? Can J Bot 73:S1423–S1433

    Google Scholar 

  • Scattolin L, Montecchio L, Agerer R (2007) The ectomycorrhizal community structure in high mountain Norway spruce stands. Trees 22:13–22

    Google Scholar 

  • Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J For Res 127:347–357

    Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85

    PubMed  CAS  Google Scholar 

  • Shaw PJA, Kibby C, Mayes J (2003) Effects of thinning treatment on an ectomycorrhizal succession under Scots pine. Mycol Res 107:317–328

    PubMed  Google Scholar 

  • Smith J, McKay D, Niwa C, Thies W, Brenner G, Spatafora J (2004) Short-term effects of seasonal prescribed burning on the ectomycorrhizal fungal community and fine root biomass in ponderosa pine stands in the Blue Mountains of Oregon. Can J For Res 34:2477–2491

    CAS  Google Scholar 

  • Smith JE, McKay D, Brenner G, Mciver J, Spatafora JW (2005) Early impacts of forest restoration treatments on the ectomycorrhizal fungal community and fine root biomass in a mixed conifer forest. J Appl Ecol 42:526–535

    Google Scholar 

  • Stendell E, Horton T, Bruns T (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359

    Google Scholar 

  • Swaty RL, Deckert RJ, Whitham TG, Gehring CA (2004) Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85:1072–1084

    Google Scholar 

  • Taniguchi T, Kanzaki N, Tamai S, Yamanaka N, Futai K (2007) Does ectomycorrhizal fungal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient? New Phytol 173:322–334

    PubMed  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    PubMed  CAS  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst.] and beach (Fagus sylvatica L.) along north–south transects in Europe. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin Heidelberg New York, pp 343–365

    Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201

    PubMed  CAS  Google Scholar 

  • Tedersoo L, Gates G, Dunk CW, Lebel T, May TW, Kõljalg U, Jairus T (2009) Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter? Mycorrhiza 19:403–416

    PubMed  Google Scholar 

  • Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol 170:873–884

    PubMed  CAS  Google Scholar 

  • Twieg B, Durall D (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    PubMed  Google Scholar 

  • van der Heijden EW, Vries FWD, Kuyper TW (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. I. Above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can J Bot 77:1821–1832

    Google Scholar 

  • Villeneuve N, Tacon F, Bouchard D (1991) Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of outplanted Douglas-fir seedlings. Plant Soil 135:95–107

    Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Google Scholar 

  • Wang Q, Guo L-D (2010) Ectomycorrhizal community composition of Pinus tabulaeformis assessed by ITS-RFLP and ITS sequences. Botany 88:590–595

    CAS  Google Scholar 

  • Wright SH, Berch SM, Berbee ML (2009) The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla). Mycorrhiza 19:267–276

    PubMed  CAS  Google Scholar 

  • Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159

    Google Scholar 

  • Wu T, Kabir Z, Koide R (2005) A possible role for saprotrophic microfungi in the N nutrition of ectomycorrhizal Pinus resinosa. Soil Biol Biochem 37:965–975

    CAS  Google Scholar 

  • Zadworny M, Smolinski D, Idzikowska K, Werner A (2007) Ultrastructural and cytochemical aspects of the interaction between the ectomycorrhizal fungus Laccaria laccata and the saprotrophic fungi, Trichoderma harzianum and T. virens. Biocontrol Sci Technol 17:921–932

    Google Scholar 

  • Zhou Z, Hogetsu T (2002) Subterranean community structure of ectomycorrhizal fungi under Suillus grevillei sporocarps in a Larix kaempferi forest. New Phytol 154:529–539

    Google Scholar 

Download references

Acknowledgements

I thank Chris Fernandez, Kristin Haider, Matt Peoples, and Krittika Petprakob for helpful suggestions during the development of this chapter. I also acknowledge financial support from the Northeast Sun Grant Initiative and the USDA NIFA AFRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Koide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koide, R.T. (2012). 10 Context-Dependent Interaction Hierarchies and the Organization of Ectomycorrhizal Fungal Communities. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30826-0_10

Download citation

Publish with us

Policies and ethics