Skip to main content

Evidences of Bryophyte Allelochemical Interactions: The Case of Sphagnum

  • Chapter
  • First Online:
Book cover Allelopathy

Abstract

In most terrestrial ecosystems, allelochemical interactions are involved in vascular plants. Nevertheless, bryophytes represent also a crucial group found in many ecosystems with a specific morphology and physiology (e.g. secondary metabolism). Among bryophytes, Sphagnum genus is of particular interest because they form a dense homogeneous carpet which is slowly decomposed (the peat) in peatlands. Such ecosystems represent a terrestrial sink of carbon and so are crucial to be studied, especially under a climate change. Objectives of this chapter were (1) to synthesize current bryophyte allelochemical interactions and (2) to illustrate recent research on Sphagnum with the case of Sphagnum fallax phenolics (production and degradation) recovered in a french peatland. The top layer of living Sphagnum represents the active allelopathic part where water-soluble phenolics were mostly recovered. Their concentrations were found to change along the seasons. The transformation of phenolic compounds is performed by an enzymatic system O2 (phenoloxidases) or H2O2 (peroxidases) dependent. Sphagnum-peroxidases constituted the main oxidative system and fungal phenoloxidases were proposed to be regulated by phenolics. Moreover, Sphagnum was able to regulate its secondary metabolism under a climate forcing by decreasing its phenolic concentrations. Allelopathic potential of Sphagnum phenolics was stated with their role in the microdistribution of associated Sphagnum microorganisms. Finally, Sphagnum extracts also strongly delayed Pine and Lolium germination seeds and inhibited Lolium radicle growth and delayed Raphanus and Pinus radicles. Ecological and agronomic perspectives of Sphagnum extracts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón-Gutiérrez E, Floch C, Augur C, Le Petit J, Ziarelli F, Criquet S (2009) Spatial variations of chemical composition, microbial functional diversity, and enzyme activities in a Mediterranean litter (Quercus ilex L.) profile. Pedobiologia 52:387–399

    Article  Google Scholar 

  • Asakawa Y (1990) Terpenoids and aromatic compounds with pharmacological activity from bryophytes. In: Zinsmeister HD, Mues R (eds) Bryophytes their chemistry and chemical taxonomy. Claredon Press, Oxford, pp 367–410

    Google Scholar 

  • Becker H (2000) Bryophyte in vitro cultures, secondary products. In: Spier RE (ed) Encyclopedia of cell technology, vol 1. Wiley, New York, pp 278–283

    Google Scholar 

  • Bonnett SAF, Ostle N, Freeman C (2006) Seasonal variations in decomposition processes in a valley-bottom riparian peatland. Sci Total Environ 370:561–573

    Article  PubMed  CAS  Google Scholar 

  • Chiapusio G, Sanchez AM, Reigosa MJ, Gonzalez L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453

    Article  CAS  Google Scholar 

  • Chiapusio G, Gallet C, Pellissier F (2004) Uptake and translocation of phytochemical 2-benzoxazolinone (BOA) in radish seeds and seedlings. J Exp Bot 55:1587–1592

    Article  PubMed  CAS  Google Scholar 

  • Chiapusio G, Gallet C, Dobremez JF, Pellissier F (2005) Allelochemicals: tomorrow’s herbicides? In: Regnaud-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plantorigin. Intercept Ltd., Lavoisier Publ. Inc., Hampshire, pp 149–155

    Google Scholar 

  • Criquet S, Joner EJ, Leyval C (2001) 2,7-Diaminofluorene is a sensitive substrate for detection and characterization of plant root peroxidase activities. Plant Sci 161:1063–1066

    Article  CAS  Google Scholar 

  • Equiha M, Husher MB (1993) Impact of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration. J Ecol 81:359–365

    Article  Google Scholar 

  • Gallet C, Lebreton P (1995) Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Siol Biol Biochem 31:1151–1160

    Article  Google Scholar 

  • Geiger H (1990) Biflavonoids in bryophytes. In: Zinsmeister HD, Mues R (eds) Bryophytes their chemistry and chemical taxonomy. Claredon Press, Oxford, pp 143–161

    Google Scholar 

  • Gilbert D, Mitchell EAD (2006) Microbial diversity in Sphagnum peatlands. In: Martini IP, Matinez Cortizas A, Chesworth W (eds) Peatlands: basin evolution and depository of records on global environmental and climatic changes. Chapman & Hall, New York, pp 287–318

    Google Scholar 

  • Gilbert D, Amblard C, Bourdier G, Francez AJ (1998) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb Ecol 35:83–93

    Article  PubMed  CAS  Google Scholar 

  • Gilbert D, Mitchell EAD, Amblard C, Bourdier G, Francez AJ (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozoo 42:99–104

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to 510 climatic warming. Ecol Appl 1:181–195

    Article  Google Scholar 

  • Grooss GG, hemingway RW, Yoshida T (1999). Plant polyphenols 2: chemistry, biology, pharmacology, ecology. Kluwer academic publishers, New York

    Google Scholar 

  • Hattenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Tree 15:238–243

    PubMed  Google Scholar 

  • Hussain MI, Gonzalez-Rodriguez L, Reigosa MJ (2008) Germination and growth response of four plant species to different allelochemicals and herbicides. Allelopathy J 22:101–108

    Google Scholar 

  • Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint ML, Gilbert D (2011a) Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb Ecol 61:374–385

    Article  PubMed  Google Scholar 

  • Jassey VEJ, Gilbert D, Binet P, Toussaint M-L, Chiapusio G (2011b) Effect of a temperature gradient on Sphagnum fallax and its associated microbial communities: a study under controlled conditions. Can J Microb 57:226–235

    Article  CAS  Google Scholar 

  • Jassey VEJ, Chiapusio G, Gilbert D, Buttler A, Toussaint ML, Binet P (2011c) Experimental climate effect on seasonal variability of polyphenol/phenoloxidase interplay along a narrow fen-bog ecological gradient. Glob Change Biol 17:2945–2957

    Article  Google Scholar 

  • Jassey VEJ, Chiapusio G, Gilbert D, Toussaint ML, Binet P (2012) Phenoloxidase and peroxidase activities in a Sphagnum-dominated peatland in a warming climate. Soil Biol Bioch 46:49–62

    Article  CAS  Google Scholar 

  • Kato-Noguchi H, Seki T, Shigemori (2010) Allelopathy and allelopathic substance in the moss Rhynchostegium pallidifolium. J Plant Physiol 167:468–471

    Google Scholar 

  • Ligrone R, Carafa A, Duckett JG, Renzaglia KS, Ruel K (2008) Immunocytochemical detection of lignin related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Syst Evol 270:257–272

    Article  CAS  Google Scholar 

  • Markham KR (1990) Bryophyte flavonoids, their structures, distribution, and evolutionary significance. In: Zinsmeister HD, Mues R (eds) Bryophytes their chemistry and chemical taxonomy. Claredon Press, Oxford, pp 143–161

    Google Scholar 

  • Michel P, Burritt DJ, William G (2011) Lee Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos 120:1272–1280

    Article  Google Scholar 

  • Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodiv Conserv 17:2115–2137

    Article  Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20

    Article  CAS  Google Scholar 

  • Nosaki H, Hayashi KJ, Nishimura N, kawaide H, Matsuo A, Takaoka D (2007) Momilactone A and B as allelochemicals from moss Hypnum plumaeforme: first occurrence in bryophytes. Biosci Biotech Biochem 71:3127–3130

    Google Scholar 

  • Opelt K, Chobot V, Hadacek F, Schonmann S, Eberl L, Berg G (2007) Investigations of the structure and function of bacterial communities associated with sphagnum mosses. Environ Microbiol 9:2795–2809

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochem 38:35–39

    Article  CAS  Google Scholar 

  • Rudolph H, Samland J (1985) Occurrence and metabolism of Sphagnum acid in the cell walls of bryophytes. Phytochem 24:745–749

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Slack NG (2011) The ecological value of Bryophytes as indicators of climate change. In: Tuba Z, Slack NG, Stark LR (eds) Bryophytes, Ecology and climate change. Cambridge University Press, Cambridge, pp 5–12

    Google Scholar 

  • Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenetski KV, Sheng Y (2004) Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303:353–356

    Article  PubMed  CAS  Google Scholar 

  • Soudzilovskaia NA, Graae BJ, Douma JC, Grau O, Milbau A, Shevtsova A, Wolters L, Cornelissen JHC (2011) How do bryophytes govern generative recruitment of vascular plants? New Phytol 190:1019–1031

    Article  PubMed  Google Scholar 

  • Souto XC, Chiapusio G., Pellissier F (2000) Relationships between phenolics and soil micro-organims in spruce forest : significance for natural regeneration. J Chem Ecol 26:2025–2034

    Google Scholar 

  • Strack M (2008) Peatlands and climate change. International Peat Society, Jyväskylä, p 235

    Google Scholar 

  • Tan BC, Pocs T (2000) Bryogeography and conservation of bryophytes. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 403–448

    Chapter  Google Scholar 

  • Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fert Soils 46:215–225

    Article  CAS  Google Scholar 

  • Thormann MN (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Can J Soil Sci 86:281–293

    Article  CAS  Google Scholar 

  • Tsubota H, Kuroda A, Masuzaki H, Nakahara M, Deguchi H (2006) Premiminary study on allelopathic activity of bryophytes under laboratory conditions using the sandwich method. J Hattori Bot Lab 100:517–525

    Google Scholar 

  • Tsutschek R (1982) Influence of L-α-aminooxy-β-phenylpropionic acid with cold-induced sphagnorubin synthesis in Sphagnum magellanicum BRID. Planta 155:307–309

    Article  Google Scholar 

  • Van Breemen N (1995) How Sphagnum bogs down other plants. Tree 10(7):270–275

    PubMed  Google Scholar 

  • Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in Sphagnum. Acta Botanica Neerlandica 46:117–130

    CAS  Google Scholar 

  • Veteli TO, Mattson WJ, Niemela P, Julkunen-Tiitto R, Kellomaki S, Kuokkanen K, Lavola A (2007) Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees? J Chem Ecol 33:287–296

    Article  PubMed  CAS  Google Scholar 

  • Viard-Crétat F, Gallet C, Lefebvre M, Lavorel S (2009) A leachate a day keeps the seedlings away: mowing and the inhibitory effect of Festuca paniculata in subalpine grasslands. Ann Bot 103:1271–1278

    Article  PubMed  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen JQ, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Glob Change Biol 9:141–151

    Article  Google Scholar 

  • Wilkinson DM, Mitchell EAD (2010) Testate amoebae and nutrient cycling with particular reference to soils. Geomicrob J 27:520–533

    Article  Google Scholar 

  • Zamfir M (2000) Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos 88:603–611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Chiapusio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiapusio, G., Jassey, V.E.J., Hussain, M.I., Binet, P. (2013). Evidences of Bryophyte Allelochemical Interactions: The Case of Sphagnum . In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_3

Download citation

Publish with us

Policies and ethics