Skip to main content
Book cover

Allelopathy pp 451–468Cite as

Allelopathy and Abiotic Stress Interaction in Crop Plants

  • Chapter
  • First Online:

Abstract

Global climate models predict the increase in daily mean temperature, changed patterns of precipitation, increase in episodes of drought, and floods in future, the abiotic stresses, all posing threats to crop production and food security. Plants have evolved several mechanisms to cope with abiotic stresses. Ecological interaction of production and release of secondary metabolites among organisms in ecosystems, the allelopathy, has been associated with the tolerance mechanism against abiotic stresses. Endogenous levels of secondary metabolites, defined as allelochemicals, have been taken as indices of abiotic stress resistance. Exogenous application of allelochemicals has been found to increase their endogenous level with simultaneous increase in growth and resistance against abiotic stresses. Identification of genes responsible for allelochemicals production, and development of transgenic crops with these genes is becoming an attractive option for improving resistance against abiotic stresses. In this chapter, the production of allelochemicals under abiotic stresses in plants, strategies to enhance their production, and role in improving resistance against abiotic stresses is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abenavoli MR, Lupini A, Oliva S, Sorgona A (2010) Allelochemicals effects on net nitrate uptake and plasma membrane H+-ATPase activity on maize seedlings. Biol Plant 54:149–153

    Article  CAS  Google Scholar 

  • Abenavoli MR, Santis CD, Sidari M, Sorgona A, Badiani M, Cacco G (2001) Influence of coumarin on the net nitrate uptake in Durum wheat. New Phytol 150:619–627

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavanoid that stimulates arbuscular mycorrhiza formation in melon roots. Amer Phytopathol Soc. 15:334–340

    CAS  Google Scholar 

  • Ali RM (2000) Putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179

    Article  CAS  Google Scholar 

  • Al-Tawaha ARM, Odat N (2010) Use of sorghum and maize allelopathic properties to inhibit germination and growth of wild barley (Hordeum spontaneum). Not Bot Hort Agrobot Cluj 38:124–127

    Google Scholar 

  • Argandona VH, Luza JG, Niemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochem 19:1665–1668

    Article  CAS  Google Scholar 

  • Armstrong GM, Rohrbaugh LM, Rice EL, Wender SH (1970) The effect of nitrogen deficiency on the concentration of caffeoylquinic acids and scopolin in tobacco. Phytochem 9:945–948

    Article  CAS  Google Scholar 

  • Armstrong GM, Rohrbaugh LM, Rice EL, Wender SH (1971) Preliminary studies on the effect of deficiency in potassium or magnesium on concentration of chlorogenic acid and scopolin in tobacco. Proc Okla Acad Sci 51:41–43

    CAS  Google Scholar 

  • Asao T, Kitawaza H, Tomita K, Suyama K, Yamamoto H, Hosoki T, Pramanik MHR (2004) Mitigation of cucumber autotoxicity in hydroponic cultureusing microbial strain. Sci Hort 99:207–214

    Article  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions—an update. Pest Manage Sci 63:308–326

    Article  CAS  Google Scholar 

  • Bertholdsson N-O (2010) Breeding spring wheat for improved allelopathic potential. Weed Res 50:49–57

    Article  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Barnes JP, Putnam AR, Burke BA, Aasen AJ (1987) Isolation and characterization of allelochemicals in rye herbage. Phytochem 26:1385–1390

    Article  CAS  Google Scholar 

  • Blum U (1998) Effect of microbial utilization of phenolic acid and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685–708

    Article  CAS  Google Scholar 

  • Bogatek R, Gniazdowska A (2007) ROS and phytohormones in plant–plant allelopathic interactions. Plant Signal Behav 2:317–318

    Article  PubMed  Google Scholar 

  • Bonner J (1950) The role of toxic substances in the interactions of higher plants. Bot Rev 16:51–65

    Article  CAS  Google Scholar 

  • Borner H (1960) Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot Rev 26:393–424

    Article  CAS  Google Scholar 

  • Buchanan B, Gruissem W, Jones RL (2002) Biochemistry and molecular biology of plants. Am Soc Plant Biologists, Rockville, Maryland, USA

    Google Scholar 

  • Callaway RM, Vivianco JM (2005) Invasion of plants into native communities using the underground superhighway. In: Harper JDI, An M, Wu H, Kent JH, (eds) Proceedings of the 4th world congress on allelopathy, International Allelopathy Society. pp. 50–56, Charles Stuart University, Wagga Wagga, NSW, Australia

    Google Scholar 

  • Chaves N, Escudero JC (1997) Allelopathic effect of Cistus ladanifer on seed germination. Funct Ecol 11:432–440

    Article  Google Scholar 

  • Chi WC, Fu SF, Huang TL, Chen YA, Chen CC, Huang HJ (2011) Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots. Plant Mol Biol 77:591–607

    Article  PubMed  CAS  Google Scholar 

  • Dear J, Aronoff S (1965) Relative kinetics of chlorogenic and caceic acids during the onset of boron deficiency in sunflower. Plant Physiol 40:458–459

    Article  PubMed  CAS  Google Scholar 

  • Dilday RH, Yan WG, Moldenhauer KAK, Gravois KA (1998) Allelopathic activity in rice for controlling major aquatic weeds. In: Olofsdotter M (ed) Allelopathy in rice. International Rice Research Institute, Manila, pp 7–26

    Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Du YJ, Jin YH (1999) Simulations of allelopathy in continuous cropping of soybean. Chin J Appl Ecol 10:209–212

    Google Scholar 

  • Dong Y, Tsuzuki E, Kamiunten H, Lin D, Terao H, Matsuo M, Cheng S (2005) Molecular genetic analysis of QTLs for ferulic acid content in dried straw of rice (Oryza sativa L.). Biochem Genet 43:25–34

    Article  PubMed  CAS  Google Scholar 

  • Ebana K, Yan W, Dilday RH, Namai H, Okuno K (2001) Variation in the allelopathic effect of rice with water soluble extracts. Agron J 93:12–16

    Article  Google Scholar 

  • Einhellig FA (1995) Mechanism of action of allelochemicals in allelopathy. ACS Symp Ser 582:96–116

    Article  Google Scholar 

  • Einhellig FA (1996) Interaction involving allelopathy in cropping systems. Agron J 88:886–893

    Article  CAS  Google Scholar 

  • Einhellig FA, Erickson PC (1984) Interactions of temperature and ferulic acid stress on grain sorghum and soybeans. J Chem Ecol 10:161–170

    Article  CAS  Google Scholar 

  • Einhellig FA, Muth MS, Schon MK (1985) Effects of allelochemicals on plant water relationships. Amer Chem Soc Symp Ser 268:170–195

    Google Scholar 

  • Farooq M, Wahid A, Basra SMA, Din IU (2009a) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195:262–269

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009b) Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci 195:237–246

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Cheema SA, Lee DJ, Aziz T (2010) Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci 196:336–345

    Article  CAS  Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011a) The role of allelopathy in agricultural pest management. Pest Manage Sci 67:493–506

    Article  CAS  Google Scholar 

  • Farooq M, Habib M, Rehman A, Wahid A, Munir R (2011b) Employing aqueous allelopathic extracts of sunflower in improving salinity tolerance of rice. J Agric Soc Sci 7:75–80

    Google Scholar 

  • Freeman GG, Mossadeghi N (1971) Water regime as a factor determining flavor strength in vegetables. Biochem J 124:61F–62F

    Google Scholar 

  • Fujii Y (1992) The potential biological control of paddy weeds with allelopathy: allelopathic effect of some rice varieties. In: Proceedings of the international symposium on biological control and integrated management of paddy and aquatic weeds in Asia. National Agricultural Research Center, Tsukuba, Japan, pp 305–320

    Google Scholar 

  • Ghafar A, Saleem B, Haq A, Qureshi MJ (2001) Isolation and identification of allelochemicals of sunflower (Helianthus annuus L.). Int J Agric Biol 3:21–22

    Google Scholar 

  • Gershenzon J (1984) Changes in the level of plant secondary metabolites under water and nutrient stress. Recent Adv Phytochem 18:273–320

    CAS  Google Scholar 

  • Gianoli E, Niemeyer HM (1997) Characteristics of hydroxamic acid induction in wheat triggered by aphid infestation. J Chem Ecol 23:2695–2705

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  PubMed  CAS  Google Scholar 

  • Gniazdowska A, Oracz K, Bogatek R (2007) Phytotoxic effect of sunflower (Helianthus annuus L.) to hormonal balance (ABA: Ethylene) in germinating mustard (Sinapis alba L.) seeds. Allelopath J 19:215–226

    Google Scholar 

  • Granato TC, Banwort WL, Porter PM, Hassett JJ (1983) Effect of variety and stage of growth on potential allelochemical compounds in sobean toots. J Chem Ecol 9:1281–1294

    Article  CAS  Google Scholar 

  • Haddadchi GR, Gerivani Z (2009) effects of phenolic extracts of canola (Brassica napus L.) on germination and physiological responses of soybean (Glycin max L.) seedlings. Int J Plant Prod 3:63–74

    Google Scholar 

  • Han CM, Pan KW, Wu N, Wang JC, Li W (2008) Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. Sci Hort 116:330–336

    Article  Google Scholar 

  • Han LM, Wang SQ, Ju HY, Yan X, Yan F (2000) Identification and study on allelopathy of soybean root exudates. Soybean Sci 19:119–125

    Google Scholar 

  • Hanson AD, Ditz KM, Singletary GW, Leland TJ (1983) Gramine accumulation in leaves of barley grown under high temperature stress. Plant Physiol 71:896–904

    Article  PubMed  CAS  Google Scholar 

  • Hura T, Grzesiak S, Hura K, Thimet E, Tokarz K, Wedzony M (2007) Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Ann Bot 100:767–775

    Article  PubMed  CAS  Google Scholar 

  • Imam A, Wahab Z, Rastan SOS, Halim MRA (2006) Allelopathic effect of seed corn and vegetable soybean extracts at two growth stages on germination and seedling growth of corn and soybean varieties. J Agron 5:62–68

    Article  Google Scholar 

  • Inderjit D, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539

    Article  PubMed  CAS  Google Scholar 

  • Inderjit D, Moral DR (1997) Is separating allelopathy from resource competition realistic? Bot Rev 63:221–230

    Article  Google Scholar 

  • Jensen LB, Courtois B, Shen L, Li Z, Olofsdotter M, Mauleon RP (2001) Locating genes controlling rice allelopathy effect against barnyardgrass in upland rice. Agron J 93:21–26

    Article  CAS  Google Scholar 

  • Jimanez MB, Flores SA, Zapata EV, Campos EP, Bouquelet S, Zenteno E (2003) Chemmical characterization of root exudates from rice (Oryza sativa) and their effect on the chemotatic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Junaedi A, Jung WS, Chung IM, Kim KH (2008) Differentially expressed genes of potentially allelopathic rice in response against barnyardgrass. J Crop Sci Biotech 10:231–236

    Google Scholar 

  • Kamal J (2011) Quntification of alkaloids, phenols and flavonoids in sunflower (Helianthus annuus L.). Afr J Biotechnol 10:3149–3151

    CAS  Google Scholar 

  • Kato Noguchi HK (2004) Allelopathic substance in rice root exudates: rediscovery of momilacetate B as an allelochemical. J Plant Physiol 161:271–276

    Article  PubMed  CAS  Google Scholar 

  • Kato Noguchi HK (2009) Stress-induced allelopathic activity and momilactone B in rice. Plant Growth Regul 59:153–158

    Article  CAS  Google Scholar 

  • Kato Noguchi HK, Kosemura S, Yamamura S, Mizutani J, Hasegawa K (1994) Allelopathy of oats I: assessment of allelopathic potential of extract of oat shoot and identification of an allelochemical. J Chem Ecol 20:309–314

    Article  CAS  Google Scholar 

  • Kim KU, Shin DH, Kim HY, Lee IJ, Olofsdotter M (1999) Evaluation of allelopathic potential in rice germplasm. Korean J Weed Sci 9:1–9

    CAS  Google Scholar 

  • Kim KW, Kim KU, Shin DH, Lee IJ, Kim HY, Koh JC, Nam SH (2000) Searching for allelochemicals from the allelopathic rice cultivar, Kouketsumochi. Korean J Weed Sci 20:197–207

    Google Scholar 

  • Koeppe DE, Rohrbaugh LM, Rice EL, Wender SH (1970) Tissue age and caffeoylquinic acid concentration in sunflower. Phytochem 9:297–301

    Article  CAS  Google Scholar 

  • Kpoviessi DSS, Gduguidi FA, Gbenou JD, Accrombessi GC, Haddad M, Moudachireu M, Lederco JQ (2006) Allelophattic effects on cowpea (Vigna unguiculata (L.) Walp) plant and cytotoxic activities of sterols and triterpene isolated from Justicia anselliana (NEES) T. Anders. Electr J Nat Subst 1:12–19

    Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Kupidłowska E, Gniazdowska A, Stepien J, Corbineau F, Vinel D, Skoczowski A, Janeczko A, Bogatek R (2006) Impact of sunflower (Helianthus annuus L.) extracts upon reserve mobilization and energy metabolism in germinating mustard (Sinapis alba L.) seeds. J Chem Ecol 32:2569–2583

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lehman RH, Rice EL (1972) Effect of deficiencies of nitrogen, potassium and sulphur on chlorogenic acids and scopolin in sunflower. Am Midl Nat 87:71–80

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U (1999) Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J Chem Ecol 25:1517–1529

    Article  CAS  Google Scholar 

  • Li ST, Zhou JM, Wang HY, Chen XQ (2001) Allelopathic mechanism of plants. Rural Eco-Environ 17:52–55

    Google Scholar 

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    Article  PubMed  CAS  Google Scholar 

  • Lin W, He H, Shen L, Chen X, Ke Y, Guo Y, He H (2004) A proteomic approach to analyzing rice allelopathy on barnyard grass (Echinochloa crus-galli L.). 12th Australian Agronomy Conference AAC, Preceedings of 4th ICSC

    Google Scholar 

  • Lin W, Kim KU, Liang K, Guo Y (2000) Hybrid rice with allelopathy. In: Kim KU, Shin DH (eds) Proceedings of the international workshop in rice allelopathy (Kyungpook National University, Taegu, Korea, 17–19 August 2000). Institute of Agricultural Science and Technology, Kyungpook National University, Taegu, pp 49–56

    Google Scholar 

  • Liu DL, Lovett JV (1993) Biologically active secondary metabolites of barley 1: developing techniques and accessing allelopathy in barley. J Chem Ecol 19:2217–2230

    Article  CAS  Google Scholar 

  • Loche J, Chouteau J (1963) Incidences des carences en Ca, Mg or P surl’accumulation des polyphenol dans la feuille de tabac. CR Hebd Seances Acad Agric Fr 49:1017–1026

    Google Scholar 

  • Lovett JV (1985) Defensive strategies of plants with special reference to allelopathy. Papers Proc Royal Soc Tasmania 119:31–37

    Google Scholar 

  • Lovett JV, Hoult AHC (1994) Allelopathy and self defence in barley. ACS Symp Ser 582:170–183

    Article  Google Scholar 

  • Lutts S, Kinet J-M, Bouharmont J (1996) Ethylene production in realtion to salinity by leaves of rice (Oryza sativa L.) tolerance and exogenous putrescine application. Plant Sci 116:15–25

    Article  CAS  Google Scholar 

  • Lyu SW, Blum U (1990) Effect of ferulic acid, aan allelopathic compound, on net P, K and water uptake by cucumber seedlings in a split root system. J Chem Ecol 8:2429–2439

    Article  Google Scholar 

  • Ma D-W, Fan X-T, Ge F-I, Zhang H (2008) The allelopathy of aqueous extracts from Galinsoga parviflora Cav. under low temperature stress. J Trop Subtrop Bot 16:526–530

    Google Scholar 

  • Macías FA, Molinillo JM, Varela RM, Galindo JC (2007) Allelopathy-a natural alternative for weed control. Pest Manag Sci 63:327–348

    Article  PubMed  CAS  Google Scholar 

  • Mahmoodzadeh H, Abbasi F, Ghotbzadeh Y (2011) Allelopathic effects of root exudates and leaching of rice seedlings on hedgemustard (Sisybrium officinale). Res J Environ Sci 5:486–492

    Article  Google Scholar 

  • Majek W, Quinton DA, Broersma K (1980) Cyanogenic glycoside levels in Saskatoon service-berry. J Range Manage 33:197–199

    Article  Google Scholar 

  • Makoi JHJR, Ndakidemi PA (2007) Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotechnol 6:1358–1364

    CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Maqbool N (2010) Exploring the role of sorgaab in improving water stress tolerance in maize at germination and vegetative growth stages. M. Phil Thesis submitted to Department of Botany, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Mattice JD, Dilday RH, Gbur EE, Skulman BW (2001) Barnyardgrass growth inhibition with rice using high-performance liquid chromathography to identify rice accession activity. Agron J 93:8–11

    Article  Google Scholar 

  • Mehmood A (2010) Weed management in maize (Zea mays L.) through allelopathy. Ph.D Thesis submitted to Department of Agronomy, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Molish H (2001) The influence of one plant on another: allelopathy (translated by LJ La Fleur and MAB. Malik, Ed. SS Narwal). Scientific Publishers, Jodhpur, p 132

    Google Scholar 

  • Nardi S, Sessi E, Pizzeghello D, Sturaro A, Rella R, Parvol G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658

    Article  PubMed  CAS  Google Scholar 

  • Navarez D, Olofsdotter M (1996) Relay seeding procedure as screening method in allelopathy research. Proc 2nd Int Weed Cont Conf 4:285–1290

    Google Scholar 

  • Nelson CE (1953) Hydrocyanic acid content of certain sorghums under irrigation as affected by nitrogen fertilizer and soil moisture stress. Agron J 45:6115–6617

    Google Scholar 

  • Nimbal CI, Pedersen JF, Yerkes CN, Weston LA, Weller SC (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347

    Article  CAS  Google Scholar 

  • Noguchi HK (2008) Allelochemicals released from rice plants. Japanese J Plant Sci 2:18–25

    Google Scholar 

  • Okuno K, Ebana K (2003) Identification of QTL controlling allelopathic effects in rice: genetic approaches to biological control of weeds. Japan Agric Res Quart 37:77–81

    CAS  Google Scholar 

  • Okuno K, Ebana K, Hegab M (2008) Challenges for biological weed control using genetic diversity of rice-QTL and candidate compounds associated with allelopathic effect. CS2–S1, 04 (16:00–16:20) 5th International Crop Science Congress and Exhibition (ICSC 2008)

    Google Scholar 

  • Olkowski AA, Amarowicz R, Peiquiang Y, Mckinnon JJ, Maenz DD (2003) A rapid HPLC method for determination of major phenolic acids in plant material. Polish J Food Nutri Sci 12:53–57

    CAS  Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress. Wiley, New York

    Google Scholar 

  • Pedrol N, González L, Reigosa MJ (2006) Allelopathy and abiotic stress. In: Reigosa MJ, Pedrol N, González L (eds) Proceedings of allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 171–209

    Google Scholar 

  • Ortega RC, Nunez AL, Anaya AL (2007) Allelochemical stress can trigger oxidative damage in receptor plants: mode of action and phytotoxicity. Plant Signal Behav 2:267–270

    Article  Google Scholar 

  • Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356

    Article  PubMed  CAS  Google Scholar 

  • Popa VI, Dumitru M, Volf I, Anghel N (2008) Lignin and polyphenols as allelochemicals. Ind Crop Prod 27:144–149

    Article  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, London

    Google Scholar 

  • Rice EL (1987) Allelopathy: an overview. allelochemical: role in agriculture in forestry. In American Chemical Society Symposium Series No. 330. pp 8–22

    Google Scholar 

  • Rimando AM, Dayan FE, Czarnota MA, Weston LA, Duke SO (1998) A new photosystem II electron transfer inhibitor from Sorghum bicolor. J Nat Prod 61:927–930

    Article  PubMed  CAS  Google Scholar 

  • Rimando AM, Olofsdotter M, Dayan FE, Duke SO (2001) Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron J 93:16–20

    Article  CAS  Google Scholar 

  • Sanchez-Mareiras AM, Pedrol N, Gonzalez L, Reigosa MJ (2009) 2-3H-Benzoxazolinone (BOA) induce loss of salt tolerance in salt adapted plants. Plant Biol 11:582–590

    Article  CAS  Google Scholar 

  • Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J Roy Soc Interface 6:343–350

    Google Scholar 

  • Sgherri C, Stevanovic B, Navari-Izzo F (2004) Role of phenolics in the antioxidative status of the resurrection plant Ramonda serbica during dehydration and rehydration. Physiol Plant 122:478–488

    Article  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Singh NB, Singh D, Singh A (2009) Modification of physiological responses of water stressed Zea mays seedlings by leachate of Nicotiana plumbaginifolia. Gen Appl Plant Physiol 35:51–63

    CAS  Google Scholar 

  • Stockigt J, Oblitz P, Falkenhagen H, Lutterbach R, Ende BS (1995) Natural products and enzymes from plant cell cultures. Plant Cell Tiss Org Cult 43:97–109

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamaoki M, Matsuyamab T, Aonoc NM, Saji KH (2004) A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray. Environ Pollut 131:137–145

    Article  PubMed  CAS  Google Scholar 

  • Tang C-S, Cai WF, Kohl K, Nishimoto RK (1995) Plant stress and allelopathy. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications, pp 142–157. ACS Symposium Series 582, American Chemical Society, Washington DC

    Google Scholar 

  • Tawaha AM, Turk MA (2003) Allelopathic effects of balck mustard (Brassica nigra) on germination and growth of wild barley (Hordeum spontaneum). J Agron Crop Sci 5:298–866

    Article  Google Scholar 

  • Tevini M, Iwanzik W, Teramura AH (1983) Effects of UV-B radiations on plants during mild water stress II. Effects on growth, protein and flavonoid content. Z Pflanzenphysiol 110:459–467

    CAS  Google Scholar 

  • Tongma S, Kobayashi K, Usui K (2001) Allelopathic activity of Mexican sunflower (Tithonia diversifolia (Hemsl.) A. Gray) in soil under natural field conditions and different moisture conditions. Weed Biol Manage 1:115–119

    Article  Google Scholar 

  • Vaughn SF, Boydston RA (1997) Volatile allelocemicals released by crucifer green manures. J Chem Ecol 23:2107–2116

    Article  CAS  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory network and engineering for enhanced tolerance in plants. Curr Opin Plant Biol 9:1–7

    Article  CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730

    Article  PubMed  CAS  Google Scholar 

  • Waller GR, Cheng CS, Chou C-H, Kim D, Yang CF, Huang SC, Lin YF (1994) Allelopathic activity of naturally occurring compounds from mung beans (Vigna radiata) and their surrounding soil. In: Proceedings of ACS symposium series, Vol. 582

    Google Scholar 

  • Wang X, Wang H, Wu F, Liu B (2007) Effect of cinnamic acid on physiological chahracteristics of cucumber seedlings under salt stress. Front Agric China 1:58–61

    Article  Google Scholar 

  • Wang RL, Zeng RS, Peng SL, Chen BM, Liang XT, Xin XW (2011) Elevated temperature may accelerate invasive expansion of the liana plant Ipomoea cairica. Weed Res 51:574–580

    Article  Google Scholar 

  • Warnock DF, Hutchison WD, Tong CBS, Davis DW (2001) Evaluating maize for allelochemicals that affect european corn borer (Lepidoptera: Crambidae) larval development. Crop Sci 41:1761–1771

    Article  CAS  Google Scholar 

  • Watanabe R, Mcllrath WJ, Skok J, Chorney W, Wander SH (1961) Accumulation of scopoletin glucoside in boron deficit tobacco leaves. Arch Biochem Biophys 94:241–243

    Article  PubMed  CAS  Google Scholar 

  • Weir T, Park SW, Vivianco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  PubMed  CAS  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agro-ecosystems. J Agron 88:860–866

    Article  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T (1999) Crop cultivars with allelopathic capability. Weed Res 39:171–180

    Article  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerk D, An M (2001) Allelochemicals in wheat (Triticum astivum L.): variation of phenolic acids in shoot tissues. J Chem Ecol 27:125–135

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Pralley J, Ma W, Haig T (2003) Quantitative trait loci and molecular markers associated with wheat allelopathy. Theor Appl Genet 107:1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2000) Distribution and exudation of allelochemicals in wheat Triticum aestivum. J Chem Ecol 26:2141–2154

    Article  CAS  Google Scholar 

  • Yang GQ, Wan FH, Liu WX, Guo J (2008) Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy J 21:253–262

    Google Scholar 

  • Yu JQ, Matsui Y (1997) Effect of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 23:817–827

    Article  CAS  Google Scholar 

  • Zobel AM, Clarke PA (1999) Production of phenolic compounds in seedlings of Acer saccharum and Acer platanoides in response to UV-A radiation and heavy metals. Allelopathy J 6:21–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Wahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maqbool, N., Wahid, A., Farooq, M., Cheema, Z.A., Siddique, K.H.M. (2013). Allelopathy and Abiotic Stress Interaction in Crop Plants. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_19

Download citation

Publish with us

Policies and ethics