Skip to main content

Terahertz Spectroscopy of Liquids and Biomolecules

  • Chapter
  • First Online:
Book cover Terahertz Spectroscopy and Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 171))

Abstract

The terahertz regime has particular value for liquid and biomolecular spectroscopy. In the case of liquids, terahertz is sensitive to relaxational and collective motions in liquids [1–13]. Applications include determination of sugar, alcohol, and water content. While there are no narrow band identification features for liquids in the terahertz range, the ability of THz to transmit through packaging materials and high sensitivity of relative water content is considered highly appealing for its use as a method to rapidly verify labeled contents. The determination of the water, sucrose, alcohol, liquid fuel, and petroleum content using terahertz have been demonstrated [1, 10]. The fundamental findings from terahertz measurements of liquids include the hydration number associated with solutes [14, 15], the extent of the perturbation of the liquid structure by the solute [16, 17], and the role of interactions in binary liquids [13, 18] . New collective mode vibrations have been identified for alcohols [19, 20], and the changes in the relaxational dynamics due to mixing, and the role of collective vibrations in ionic liquids [21–24]. In order to achieve these many findings, sensitive measurement techniques and data analysis have been developed. In parallel, great strides in modeling have been made to effectively model the picosecond dielectric response for these highly complex systems.

Biological applications of terahertz have been explored from spectroscopy of biologically relevant molecules as small as sucrose up to organisms such as bacterial spores. Significant progress has been made in fundamental characterization of small biomolecules with accurate modeling of both intramolecular modes, and the intermolecular modes for crystalline material. Initial measurements of small proteins have been explored; however, theoretical understanding is not as well developed. While a variety of groups have demonstrated sensitivity in the THz dielectric response to protein and nucleic acid functional state, the origin of this sensitivity is still somewhat controversial.

In this chapter, we will discuss measurement methods, modeling of the terahertz response for these systems, and major results. We will conclude with a discussion on future directions for the applications of terahertz for liquid and biomolecular characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.U. Jepsen, U. Moller, H. Merbold, Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt. Express 15(22), 14717–14737 (2007)

    Article  ADS  Google Scholar 

  2. U. Moller, D.G. Cooke, K. Tanaka, P.U. Jepsen, Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited]. J. Opt. Soc. Am. B Opt. Phys. 26(9), A113–A125 (2009)

    Article  ADS  Google Scholar 

  3. Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative dielectric study of monohydric alcohols with terahertz time-domain spectroscopy. J. Mol. Struct. 981(1–3), 173–178 (2010)

    Google Scholar 

  4. Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative study of boson peak in normal and secondary alcohols with terahertz time-domain spectroscopy. Phys. B Condens. Matter 405(9), 2208–2212 (2010)

    Google Scholar 

  5. Y. Danten, M. Besnard, J.C. Delagnes, P. Mounaix, Far infrared absorption and terahertz time domain spectroscopy of liquid CS2: experiments and molecular dynamics simulation. Appl. Phys. Lett. 92(21), 214102 (2008)

    Google Scholar 

  6. J.T. Kindt, C.A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 100(24), 10373–10379 (1996)

    Article  Google Scholar 

  7. J.P. Laib, D.V. Nickel, D.M. Mittleman, Terahertz vibrational modes induced by heterogeneous nucleation in n-alkanes. Chem. Phys. Lett. 493(4–6), 279–282 (2010)

    Google Scholar 

  8. J.S. Li, X.J. Li, Determination principal component content of seed oils by THz-TDS. Chem. Phys. Lett. 476(1–3), 92–96 (2009)

    Article  ADS  Google Scholar 

  9. S.R. Keiding, Dipole correlation functions in liquid benzenes measured with terahertz time domain spectroscopy. J. Phys. Chem. A 101(29), 5250–5254 (1997)

    Article  Google Scholar 

  10. Y.S. Jin, G.J. Kim, C.H. Shon, S.G. Jeon, J.I. Kim, Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy. J. Korean Phys. Soc. 53(4), 1879–1885 (2008)

    Google Scholar 

  11. J.P. Laib, D.M. Mittleman, Temperature-dependent terahertz spectroscopy of liquid n-alkanes. J. Infrared Millim. Terahertz Waves 31(9), 1015–1021 (2010)

    Google Scholar 

  12. P. Dutta, K. Tominaga, Dependence of low frequency spectra on solute and solvent in solutions studied by terahertz time-domain spectroscopy. Mol. Phys. 107(18), 1845–1854 (2009)

    Article  ADS  Google Scholar 

  13. A. Oka, K. Tominaga, Terahertz spectroscopy of polar solute molecules in non-polar solvents. J. NonCryst. Solids 352(42–49), 4606–4609 (2006)

    Article  ADS  Google Scholar 

  14. T. Arikawa, M. Nagai, K. Tanaka, Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 457(1–3), 12–17 (2008)

    Article  ADS  Google Scholar 

  15. K.J. Tielrooij, N. Garcia-Araez, M. Bonn, H.J. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)

    Article  ADS  Google Scholar 

  16. U. Heugen, G. Schwaab, E. Brundermann, M. Heyden, X. Yu, D.M. Leitner, M. Havenith, Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad Sci. U. S. A. 103, 12301–12306 (2006)

    Article  ADS  Google Scholar 

  17. J. Xu, K.W. Plaxco, S.J. Allen, J.E. Bjarnason, E.R. Brown, 0.15–3.72 THz absorption of aqueous salts and saline solutions. Appl. Phys. Lett. 90(3), 031908 (2007)

    Google Scholar 

  18. B.N. Flanders, R.A. Cheville, D. Grischkowsky, N.F. Scherer, Pulsed terahertz transmission spectroscopy of liquid CHCl3, CCl4, and their mixtures. J. Phys. Chem. 100(29), 11824–11835 (1996)

    Article  Google Scholar 

  19. Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative dielectric study of monohydric alcohols with terahertz time-domain spectroscopy. J. Mol. Struct. 981(1–3), 173–178 (2010)

    Article  ADS  Google Scholar 

  20. Y. Yomogida, Y. Sato, R. Nozaki, T. Mishina, J. Nakahara, Comparative study of boson peak in normal and secondary alcohols with terahertz time-domain spectroscopy. Phys. B Condens. Matter 405(9), 2208–2212 (2010)

    Article  ADS  Google Scholar 

  21. K. Yamamoto, M. Tani, M. Hangyo, Terahertz time-domain spectroscopy of imidazolium ionic liquids. J. Phys. Chem. B 111(18), 4854–4859 (2007)

    Article  Google Scholar 

  22. Y. Shim, H.J. Kim, Dielectric relaxation, ion conductivity, solvent rotation, and solvation dynamics in a room-temperature ionic liquid. J. Phys. Chem. B 112(35), 11028–11038 (2008)

    Article  Google Scholar 

  23. J. Sangoro, C. Iacob, A. Serghei, S. Naumov, P. Galvosas, J. Karger, C. Wespe, F. Bordusa, A. Stoppa, J. Hunger, R. Buchner, F. Kremer, Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J. Chem. Phys. 128(21), 214509 (2008)

    Google Scholar 

  24. M. Koeberg, C.C. Wu, D. Kim, M. Bonn, THz dielectric relaxation of ionic liquid: water mixtures. Chem. Phys. Lett. 439(1–3), 60–64 (2007)

    Article  ADS  Google Scholar 

  25. J.T. Kindt, C.A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Chem. Phys. 100(24), 10373 (1996)

    Article  Google Scholar 

  26. J. Xu, K.W. Plaxco, S.J. Allen, Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci. 15(5), 1175–1181 (2006)

    Article  Google Scholar 

  27. J. Xu, K.W. Plaxco, S.J. Allen, Collective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory. J. Phys. Chem. B 110(47), 24255–24259 (2006)

    Article  Google Scholar 

  28. S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D.M. Leitner, M. Havenith, An extended dynamical hydration shell around proteins. Proc. Natl. Acad Sci. U. S. A. 104(52), 20749–20752 (2007)

    Article  ADS  Google Scholar 

  29. M. Nagai, H. Yada, T. Arikawa, K. Tanaka, Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution. Int. J. Infrared Millim. Waves 27(4), 505–515 (2006)

    Article  ADS  Google Scholar 

  30. H. Hirori, K. Yamashita, M. Nagai, K. Tanaka, Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 43(10A), L1287–L1289 (2004)

    Google Scholar 

  31. B. You, T.A. Liu, J.L. Peng, C.L. Pan, J.Y. Lu, A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection. Opt. Express 17(23), 20675–20683 (2009)

    Article  ADS  Google Scholar 

  32. L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide. Appl. Phys. Lett. 92(18), 181104 (2008)

    Google Scholar 

  33. J.P. Laib, D.V. Nickel, D.M. Mittleman, Terahertz vibrational modes induced by heterogeneous nucleation in n-alkanes. Chem. Phys. Lett. 493(4–6), 279–282 (2010)

    Article  ADS  Google Scholar 

  34. M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, D. Marx, Dissecting the THz spectrum of liquid water from first principles via correlations in time and space. Proc. Natl. Acad. Sci. U. S. A. 107(27), 12068–12073 (2010)

    Article  ADS  Google Scholar 

  35. D.A. Schmidt, O. Birer, S. Funkner, B.P. Born, R. Gnanasekaran, G.W. Schwaab, D.M. Leitner, M. Havenith, Rattling in the cage: ions as probes of sub-picosecond water network dynamics. J. Am. Chem. Soc. 131(51), 18512–18517 (2009)

    Article  Google Scholar 

  36. S.J. Kim, B. Born, M. Havenith, M. Gruebele, Real-time detection of protein-water dynamics upon protein folding by terahertz absorption. Angewandte Chemie Int. Ed. 47(34), 6486–6489 (2008)

    Article  Google Scholar 

  37. S. Ebbinghaus, S.J. Kim, M. Heyden, X. Yu, M. Gruebele, D.M. Leitner, M. Havenith, Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy. J. Am. Chem. Soc. 130(8), 2374–2375 (2008)

    Article  Google Scholar 

  38. M. Sajadi, Y. Ajaj, I. Ioffe, H. Weingartner, N.P. Ernsting, Terahertz absorption spectroscopy of a liquid using a polarity probe: a case study of trehalose/water mixtures. Angew. Chem. Int. Ed. 49, 454–457 (2010)

    Article  Google Scholar 

  39. M.L.T. Asaki, A. Redondo, T.A. Zawodzinski, A.J. Taylor, Dielectric relaxation of electrolyte solutions using terahertz transmission spectroscopy. J. Chem. Phys. 116(19), 8469–8482 (2002)

    Article  ADS  Google Scholar 

  40. M. Krüger, E. Bründermann, S. Funkner, H. Weingärtner, M. Havenith, Communications: polarity fluctuations of the protic ionic liquid ethylammonium nitrate in the terahertz regime. J. Chem. Phys. 132, 101101 (2010)

    Article  ADS  Google Scholar 

  41. A. Chakraborty, T. Inagaki, M. Banno, T. Mochida, K. Tominaga, Low-frequency spectra of metallocenium ionic liquids studied by terahertz time-domain spectroscopy. J. Phys. Chem. A 115, 1313–1319 (2011)

    Article  Google Scholar 

  42. M.C. Rheinstadter, K. Schmalzl, K. Wood, D. Strauch, Protein–protein interaction in purple membrane. Phys. Rev. Lett. 103(12), 128104 (2009)

    Google Scholar 

  43. K. Wood, C. Caronna, P. Fouquet, W. Haussler, F. Natali, J. Ollivier, A. Orecchini, M. Plazanet, G. Zaccai, A benchmark for protein dynamics: Ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range. Chem. Phys. 345, 305–314 (2008)

    Article  ADS  Google Scholar 

  44. D. Liu, X.-q. Chu, M. Lagi, Y. Zhang, E. Fratini, P. Baglioni, A. Alatas, A. Said, E. Alp, S.-H. Chen, Studies of phononlike low-energy excitations of protein molecules by inelastic X-ray scattering. Phys. Rev. Lett. 101, 135501 (2008)

    Google Scholar 

  45. W.B. Person, G. Zerbi, Vibrational Intensities in Infrared and Raman Spectroscopy. (Elsevier Scientific Publishing, Amsterdam, 1982)

    Google Scholar 

  46. B.S. Galabov, T. Dudev, Vibrational Intensities (Elsevier Science, Amsterdam, 1996)

    Google Scholar 

  47. J.S. Melinger, N. Laman, S.S. Harsha, S. Cheng, D. Grischkowsky, High-resolution waveguide terahertz spectroscopy of partially oriented organic polycrystalline films. J. Phys. Chem. A 111, 10977–10987 (2007)

    Article  Google Scholar 

  48. C.F. Zhang, S.M. Durbin, Hydration-induced far-infrared absorption increase in myoglobin. J. Phys. Chem. B 110(46), 23607–23613 (2006)

    Article  Google Scholar 

  49. J. Knab, J.-Y. Chen, A. Markelz, Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys. J. 90, 2576–2581 (2006)

    Article  ADS  Google Scholar 

  50. Y.F. He, J.Y. Chen, J.R. Knab, W.J. Zheng, A.G. Markelz, Evidence of protein collective motions on the picosecond timescale. Biophys. J. 100(4), 1058–1065 (2011)

    Article  ADS  Google Scholar 

  51. T. Ding, R.Y. Li, J.A. Zeitler, T.L. Huber, L.F. Gladden, A.P.J. Middelberg, R.J. Falconer, Terahertz and far infrared Spectroscopy of alanine-rich peptides having variable ellipticity. Opt. Express 18(26), 27431–27444 (2010)

    Article  ADS  Google Scholar 

  52. J.Y. Chen, J.R. Knab, S.J. Ye, Y.F. He, A.G. Markelz, Terahertz dielectric assay of solution phase protein binding. Appl. Phys. Lett. 90(24), 243901 (2007)

    Google Scholar 

  53. K.M. Tych, A.D. Burnett, C.D. Wood, J.E. Cunningham, A.R. Pearson, A.G. Davies, E.H. Linfield, Applying broadband terahertz time-domain spectroscopy to the analysis of crystalline proteins: a dehydration study. J. Appl. Crystallogr. 44, 129–133 (2011)

    Article  Google Scholar 

  54. E.R. Brown, E.A. Mendoza, D.Y. Xia, S.R.J. Brueck, Narrow THz spectral signatures through an RNA solution in nanofluidic channels. IEEE Sens. J. 10(3), 755–759 (2010)

    Article  Google Scholar 

  55. Y.W. Sun, Y.T. Zhang, E. Pickwell-MacPherson, Investigating antibody interactions with a polar liquid using terahertz pulsed spectroscopy. Biophys. J. 100(1), 225–231 (2011)

    Article  ADS  Google Scholar 

  56. G.M. Png, R.J. Falconer, B.M. Fischer, H.A. Zakaria, S.P. Mickan, A.P.J. Middelberg, D. Abbott, Terahertz spectroscopic differentiation of microstructures in protein gels. Opt. Express 17(15), 13102–13115 (2009)

    Article  ADS  Google Scholar 

  57. H. Yoneyama, M. Yamashita, S. Kasai, K. Kawase, R. Ueno, H. Ito, T. Ouchi, Terahertz spectroscopy of native-conformation and thermally denatured bovine serum albumin (BSA). Phys. Med. Biol. 53(13), 3543–3549 (2008)

    Article  Google Scholar 

  58. H. Chen, L. Wang, Y.G. Qu, T.Y. Kuang, L.B. Li, W.X. Peng, Investigation of guanidine hydrochloride induced chlorophyll protein 43 and 47 denaturation in the terahertz frequency range. J. Appl. Phys. 102(7) 74700 (2007)

    Google Scholar 

  59. Y. He, P.I. Ku, J.R. Knab, J.-Y. Chen, A.G. Markelz, Protein dynamical transition does not require protein structure. Phys. Rev. Lett. 101, 178103 (2008)

    Article  ADS  Google Scholar 

  60. R. Liu, M.X. He, R.X. Su, Y.J. Yu, W. Qi, Z.M. He, Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods. Biochem. Biophys. Res. Commun. 391(1), 862–867 (2010)

    Article  Google Scholar 

  61. Y. Ogawa, S. Hayashi, M. Oikawa, C. Otani, K. Kawase, Interference terahertz label-free imaging for protein detection on a membrane. Opt. Express 16(26), 22083–22089 (2008)

    Article  Google Scholar 

  62. A. Menikh, S.P. Mickan, H. Liu, R. MacColl, X.-C. Zhang, Label-free amplified bioaffinity detection using terahertz wave technology. Biosens. Bioelectron. 20(3), 658–662 (2004)

    Article  Google Scholar 

  63. M. Brucherseifer, M. Nagel, P.H. Bolivar, H. Kurz, A. Bosserhoff, R. Buttner, Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77(24), 4049–4051 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Markelz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

George, D.K., Markelz, A.G. (2012). Terahertz Spectroscopy of Liquids and Biomolecules. In: Peiponen, KE., Zeitler, A., Kuwata-Gonokami, M. (eds) Terahertz Spectroscopy and Imaging. Springer Series in Optical Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29564-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29564-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29563-8

  • Online ISBN: 978-3-642-29564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics