Skip to main content

Advance in Corneal Imaging

  • Chapter
  • First Online:
  • 1150 Accesses

Abstract

Many clinical situations require a precise assessment of corneal structures. However, the resolution of ophthalmic instruments such as the slit-lamp is limited and, for ophthalmologists, it has always been a challenge to evaluate qualitatively and quantitatively the microscopic structures of the cornea. Recently, new imaging techniques have thus been developed to overcome these limitations of light biomicroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhivov A, Stachs O, Kraak R et al (2006) In vivo confocal microscopy of the ocular surface. Ocul Surf 4(2):81–93

    Article  PubMed  Google Scholar 

  2. Labbe A, Khammari C, Dupas B et al (2009) Contribution of in vivo confocal microscopy to the diagnosis and management of infectious keratitis. Ocul Surf 7(1):41–52

    Article  PubMed  Google Scholar 

  3. Brasnu E, Bourcier T, Dupas B et al (2007) In vivo confocal microscopy in fungal keratitis. Br J Ophthalmol 91(5):588–591

    Article  PubMed  Google Scholar 

  4. Kaufman SC, Musch DC, Belin MW et al (2004) Confocal microscopy: a report by the American Academy of Ophthalmology. Ophthalmology 111(2):396–406

    Article  PubMed  Google Scholar 

  5. Niederer RL, McGhee CN (2010) Clinical in vivo confocal microscopy of the human cornea in health and disease. Prog Retin Eye Res 29(1):30–58

    Article  PubMed  CAS  Google Scholar 

  6. Patel DV, Grupcheva CN, McGhee CN (2005) Imaging the microstructural abnormalities of meesmann corneal dystrophy by in vivo confocal microscopy. Cornea 24(6):669–673

    Article  PubMed  Google Scholar 

  7. Labbe A, Nicola RD, Dupas B et al (2006) Epithelial basement membrane dystrophy: evaluation with the HRT II Rostock Cornea Module. Ophthalmology 113(8):1301–1308

    Article  PubMed  Google Scholar 

  8. Kobayashi A, Sugiyama K (2007) In vivo laser confocal microscopy findings for Bowman’s layer dystrophies (Thiel-Behnke and Reis-Bucklers corneal dystrophies). Ophthalmology 114(1):69–75

    Article  PubMed  Google Scholar 

  9. Kaufman SC, Kaufman HE (2006) How has confocal microscopy helped us in refractive surgery? Curr Opin Ophthalmol 17(4):380–388

    Article  PubMed  Google Scholar 

  10. Jalbert I, Stapleton F, Papas E et al (2003) In vivo confocal microscopy of the human cornea. Br J Ophthalmol 87(2):225–236

    Article  PubMed  CAS  Google Scholar 

  11. Sonigo B, Iordanidou V, Chong-Sit D et al (2006) In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. Invest Ophthalmol Vis Sci 47(7):2803–2811

    Article  PubMed  Google Scholar 

  12. Erie JC, Nau CB, McLaren JW et al (2004) Long-term keratocyte deficits in the corneal stroma after LASIK. Ophthalmology 111(7):1356–1361

    Article  PubMed  Google Scholar 

  13. Calvillo MP, McLaren JW, Hodge DO, Bourne WM (2004) Corneal reinnervation after LASIK: prospective 3-year longitudinal study. Invest Ophthalmol Vis Sci 45(11):3991–3996

    Article  PubMed  Google Scholar 

  14. Niederer RL, Perumal D, Sherwin T, McGhee CN (2007) Corneal innervation and cellular changes after corneal transplantation: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 48(2):621–626

    Article  PubMed  Google Scholar 

  15. Niederer RL, Sherwin T, McGhee CN (2007) In vivo confocal microscopy of subepithelial infiltrates in human corneal transplant rejection. Cornea 26(4):501–504

    Article  PubMed  Google Scholar 

  16. Mazzotta C, Balestrazzi A, Traversi C et al (2007) Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea 26(4):390–397

    Article  PubMed  Google Scholar 

  17. Labbe A, Dupas B, Hamard P, Baudouin C (2005) In vivo confocal microscopy study of blebs after filtering surgery. Ophthalmology 112(11):1979

    Article  PubMed  Google Scholar 

  18. Prakash G, Agarwal A, Jacob S (2009) Comparison of Fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability. Am J Ophthalmol 148(2):282–90.e2

    Article  PubMed  Google Scholar 

  19. Simpson T, Fonn D (2008) Optical coherence tomography of the anterior segment. Ocul Surf 6(3):117–127

    Article  PubMed  Google Scholar 

  20. Knuttel A, Bonev S, Knaak W (2004) New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography. J Biomed Opt 9(2):265–273

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Netto MV, Shekhar R et al (2007) A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Ophthalmology 114(6):1124–1132

    Article  PubMed  Google Scholar 

  22. Stahl JE, Durrie DS, Schwendeman FJ, Boghossian AJ (2007) Anterior segment OCT analysis of thin IntraLase femtosecond flaps. J Refract Surg 23(6):555–558

    PubMed  Google Scholar 

  23. Ustundag C, Bahcecioglu H, Ozdamar A et al (2000) Optical coherence tomography for evaluation of anatomical changes in the cornea after laser in situ keratomileusis. J Cataract Refract Surg 26(10):1458–1462

    Article  PubMed  CAS  Google Scholar 

  24. Baikoff G (2006) Anterior segment OCT and phakic intraocular lenses: a perspective. J Cataract Refract Surg 32(11):1827–1835

    Article  PubMed  Google Scholar 

  25. Shih CY, Ritterband DC, Palmiero PM (2009) The use of postoperative slit-lamp optical coherence tomography to predict primary failure in descemet stripping automated endothelial keratoplasty. Am J Ophthalmol 147(5):796–800, e1

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors have no proprietary or commercial interest in any product or concept discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Baudouin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Labbé, A., Denoyer, A., Baudouin, C. (2013). Advance in Corneal Imaging. In: Reinhard, T., Larkin, F. (eds) Corneal Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28747-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28747-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28746-6

  • Online ISBN: 978-3-642-28747-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics