Skip to main content

Concepts, Challenges and Perspectives in Cancer Research

  • Chapter
  • 1279 Accesses

Abstract

Cancer is one of the most fatal diseases in the world. It caused almost 12% of all deaths in women and 14% in men in 2004, only next to cardiovascular diseases, infectious and parasitic diseases. After a century of combat against cancer, the outcome of cancer treatment has noticeably improved. For example, early detection, diagnosis and treatment of cancer of the cervix and breast have lead to a high cure rate for these cancer patients in the early stage of the disease. In the past decade, the progress in innovation in radiotherapy equipment and the discovery of targeted chemotherapeutic drugs have noticeably improved the survival rate for certain types of cancer at the early or middle stages, such as some gastric, colorectal, nasopharyngeal, esophageal cancers and some histopathological types of malignant lymphoma. However, in spite of these achievements, the overall survival rate for cancer, particularly regarding hepatic cancer, pancreatic and small cell lung cancer and others has still not significantly increased. Therefore, we have to pay serious attention to the basic concepts of cancer biology, especially the mechanism of carcinogenesis, cancer development and its progression, to achieve the goal of 3P cancer medicine: the prevention (primary and secondary); the prediction of cancer as well as its clinical outcome, particularly metastasis; and the personalized treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Health Organization. The global burden of disease 2004 update. WHO Press, Part 2: 8.

    Google Scholar 

  2. Liotta L A, Kohn E C. The microenvironment of the tumor-host interface. Nature, 2001, 411: 375–379.

    Article  PubMed  CAS  Google Scholar 

  3. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer, 2006, 6: 392–401.

    Article  PubMed  CAS  Google Scholar 

  4. Pollard J W, Joyce J A. Microenviromental regulation of metastasis. Nat Rev Cancer, 2009, 9: 239–252.

    Article  PubMed  Google Scholar 

  5. Delinassios J G, Kottaridis S D, Garas J. Uncontrolled growth of tumor stromal fibroblasts in vitro. Exp Cell Biol, 1983, 51: 201–209.

    PubMed  CAS  Google Scholar 

  6. Delinassios J G. Prolonged in vitro maintenance of human diploid fibroblasts on a new tissue-culture medium. Exp Cell Biol, 1983, 51: 315–321.

    Google Scholar 

  7. Orimo A, Gupta P B, Sgroi D C, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121: 335–348.

    Article  PubMed  CAS  Google Scholar 

  8. Sugimoto H, Mundel T M, Kieran M W, et al. Identification of fibroblast heterogeneity in the tumor microenviroment. Cancer Biol Ther, 2006, 5: 1640–1646.

    Article  PubMed  CAS  Google Scholar 

  9. Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev, 2009, 19: 67–73.

    Article  PubMed  Google Scholar 

  10. Orimo A, Weinberg R A. Stromal fibroblasts in cancer. Cell Cycle, 2006, 5: 1597–1601.

    Article  PubMed  CAS  Google Scholar 

  11. Hu M, Yao J, Cai L, et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet, 2005, 37: 899–905.

    Article  PubMed  CAS  Google Scholar 

  12. Hanson J A, Gillespie J W, Grover A, et al. Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst, 2006, 98: 255–261.

    Article  PubMed  CAS  Google Scholar 

  13. Patocs A, Zhang L, Xu Y, et al. Breast-cancer stromal cells with TP53 mutations and nodal metastasis. N Eng J Med, 2007, 357: 2543–2551.

    Article  CAS  Google Scholar 

  14. Weber F, Wu Y, Zhang L, et al. Microenviromental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA, 2007, 297: 187–195.

    Article  PubMed  CAS  Google Scholar 

  15. Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenviroment in breast cancer. Cancer Cell, 2004, 6: 17–32.

    Article  PubMed  CAS  Google Scholar 

  16. Qiu W, Hu M, Sridhar A, et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinoma. Nat Genet, 2008, 40: 650–655.

    Article  PubMed  CAS  Google Scholar 

  17. Bhowmick N A, Chytil A, Plieth D, et al. TGF-ß signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 2004, 303: 848–851.

    Article  PubMed  CAS  Google Scholar 

  18. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer, 2006, 6: 392–401.

    Article  PubMed  CAS  Google Scholar 

  19. Radisky D C, Kenny P A, Bissell M J. Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem, 2007, 101: 830–839.

    Article  PubMed  CAS  Google Scholar 

  20. Le Bitoux M A, Stamenkovic I. Tumor-host interactions: the role of inflammation. Histochem and Cell Biol, 2008, 130: 1079–1090.

    Article  CAS  Google Scholar 

  21. Olsson A K, Dimberg A, Kreuger J, et al. VEGF receptor signaling in control of vascular function. Nature Reviews, 2006, 7: 359–371.

    Article  PubMed  CAS  Google Scholar 

  22. Folkman J. In: Holland JF, et al. (eds). Cancer Medicine. Decker, Ontario, Canada, 2000: 132–152.

    Google Scholar 

  23. Hanahan D, Weinberg R A. The hallmarks of cancer. Cell, 2000, 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  24. Zumsteg A, Christofori G. Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol, 2008, 21: 60–70.

    Article  Google Scholar 

  25. Coussens L M, Werb Z. Inflammation and cancer. Nature, 2002, 420: 860–867.

    Article  PubMed  CAS  Google Scholar 

  26. Lin E Y, Pollard J W. Macrophages: modulators of breast cancer progression. Novartis Foundation Symposium, 2004, 256: 158–168.

    Article  PubMed  CAS  Google Scholar 

  27. Denys H, Braems G, Lambein K, et al. The extracellular matrix regulates cancer progression and therapy response: implications for prognosis and treatment. Curr Pharm Des, 2009, 15: 1373–1384.

    Article  PubMed  CAS  Google Scholar 

  28. Angeli F, Koumakis G, Chen M C, et al. Role of stromal fibroblasts in cancer: promoting or impeding? Tumor Biol, 2009, 30: 109–120.

    Article  CAS  Google Scholar 

  29. Hewitt R E, Powe D G, Carter I, et al. Desmoplasia and its relevance to colorectal tumor invasion. Int J Cancer, 1993, 53: 62–69.

    Article  PubMed  CAS  Google Scholar 

  30. Pupa S M, Menard S, Forti S, et al. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol, 2002, 192: 259–267.

    Article  PubMed  CAS  Google Scholar 

  31. Bellon G, Martiny L, Robinet A. Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol, 2004, 49: 203–220.

    Article  PubMed  Google Scholar 

  32. Maquart F X, Pasco S, Ramont L, et al. An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit Rev Oncol Hematol, 2004, 49: 199–202.

    Article  PubMed  Google Scholar 

  33. Hynes R O. The extracellular matrix: not just pretty fibrils. Science, 2009, 326: 1216–1219.

    Article  PubMed  CAS  Google Scholar 

  34. Levental K R, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009, 139: 891–906.

    Article  PubMed  CAS  Google Scholar 

  35. Yamada K M, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell, 2007, 130: 601–610.

    Article  PubMed  CAS  Google Scholar 

  36. Hebner C, Weaver V M, Debnath J. Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annual Rev Pathol, 2008, 3: 313–339.

    Article  CAS  Google Scholar 

  37. Pure E. The road to integrative cancer therapies: emergence of a tumor-associated fibroblast protease as a potential therapeutic target in cancer. Expert Opin Ther Targets, 2009, 13: 967–973.

    Article  PubMed  CAS  Google Scholar 

  38. Grothey A, Ellis L M. Targeting angiogenesis given by vascular endothelial growth factors using antibody-base therapies. Cancer J, 2008, 14: 170–177.

    Article  PubMed  CAS  Google Scholar 

  39. Warburg O. On respiratory impairment in cancer cells. Science, 1956, 124: 269–270.

    PubMed  CAS  Google Scholar 

  40. Lindner D, Raghavan D. Intra-tumoural extra-cellular pH: a useful parameter of response to chemotherapy in syngeneic tumor lines. Br J Cancer, 2009, 100: 1287–1291.

    Article  PubMed  CAS  Google Scholar 

  41. Morita T, Nagaki T, Fukuda I, et al. Clastogenicity of low pH to various cultured mammalian cells. Mutat Res, 1992, 268: 297–305.

    Article  PubMed  CAS  Google Scholar 

  42. Luciani F, Spada M, De Milito A, et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst, 2004, 96: 1702–1713.

    Article  PubMed  CAS  Google Scholar 

  43. You H, Jin J, Shu H, et al. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett, 2009, 280: 110–119.

    Article  PubMed  CAS  Google Scholar 

  44. Gatenby R A, Gawlinski E T, Gmitro A F, et al. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res, 2006, 66: 5216–5223.

    Article  PubMed  CAS  Google Scholar 

  45. Gatenby, Gillies. Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 2004, 4: 891–899.

    Article  PubMed  CAS  Google Scholar 

  46. Martinez-Zaguilan R, Seftor E A, Seftor R E, et al. Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis, 1996, 14: 176–186.

    Article  PubMed  CAS  Google Scholar 

  47. Rofstad E K, Mathiesen B, Kindem K, et al. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res, 2006, 66: 6699–6707.

    Article  PubMed  CAS  Google Scholar 

  48. Gupta G P, Massague J. Cancer metastasis: building a framework. Cell, 2006, 127: 679–695.

    Article  PubMed  CAS  Google Scholar 

  49. Coussens L M, Fingleton B, Matrisian L M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002, 295: 2387–2392.

    Article  PubMed  CAS  Google Scholar 

  50. Lu X, Qin W, Li J, et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res, 2005, 65: 6843–6849.

    Article  PubMed  CAS  Google Scholar 

  51. Nishi T, Forgac M. The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol, 2002, 3: 94–103.

    Article  PubMed  CAS  Google Scholar 

  52. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367: 645–648.

    Article  PubMed  CAS  Google Scholar 

  53. Reya T, Morrison S J, Clarke M F, et al. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414: 105–111.

    Article  PubMed  CAS  Google Scholar 

  54. Singh S K, Hawkins C, Clarke I D, et al. Identification of human brain tumor initiating cells. Nature, 2004, 432: 396–401.

    Article  PubMed  CAS  Google Scholar 

  55. Bao S, Wu Q, McLendon R E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444: 756–760.

    Article  PubMed  CAS  Google Scholar 

  56. Al-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100: 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  57. Ginestier C, Hur M H, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007, 1: 555–567.

    Article  PubMed  CAS  Google Scholar 

  58. O’Brien C A, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature, 2007, 445: 106–110.

    Article  PubMed  Google Scholar 

  59. Ricci-Vitiani L, Lombardi D G, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445: 111–115.

    Article  PubMed  CAS  Google Scholar 

  60. Li C, Heidt D G, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res, 2007, 67: 1030–1037.

    Article  PubMed  CAS  Google Scholar 

  61. Hermann P C, Huber S L, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007, 1: 313–323.

    Article  PubMed  CAS  Google Scholar 

  62. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer, 2007, 120: 1444–1450.

    Article  PubMed  CAS  Google Scholar 

  63. Ma S, Chan K W, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 2007, 132: 2542–2556.

    Article  PubMed  CAS  Google Scholar 

  64. Yang Z F, Ho D W, Ng M N, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 2008, 13: 153–166.

    Article  PubMed  CAS  Google Scholar 

  65. Kelly P N, Dakic A, Adams J M, et al. Tumor growth need not be driven by rare cancer stem cells. Science, 2007, 317: 337.

    Article  PubMed  CAS  Google Scholar 

  66. Quintana E, Shackleton M, Sabel M S, et al. Efficient tumor formation by single human melanoma cells. Nature, 2008, 456: 593–598.

    Article  PubMed  CAS  Google Scholar 

  67. Shultz L D, Lyons B L, Burzenski L M, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol, 2005, 174: 6477–6489.

    PubMed  CAS  Google Scholar 

  68. Visvader J E, Lindeman G J. Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008, 8: 755–768.

    Article  PubMed  CAS  Google Scholar 

  69. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer, 2007, 120: 1444–1450.

    Article  PubMed  CAS  Google Scholar 

  70. Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 2009, 136: 1012–1024.

    Article  PubMed  CAS  Google Scholar 

  71. Yang W, Yan H X, Chen L, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res, 2008, 68: 4287–4295.

    Article  PubMed  CAS  Google Scholar 

  72. Yang Z F, Ho D W, Ng M N, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 2008, 13: 153–166.

    Article  PubMed  CAS  Google Scholar 

  73. Nowell P C. The clonal evolution of tumor cell populations. Science, 1976, 194: 23–28.

    Article  PubMed  CAS  Google Scholar 

  74. Shackleton M, Quintana E, Fearon E R, et al. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 2009, 138: 822–829.

    Article  PubMed  CAS  Google Scholar 

  75. Zhao Y, Wang X, Wang T, et al. Acetylcholinesterase, a key prognostic predictor for hepatocellular carcinoma, suppresses cell growth and induces chemosensitization. Hepatology, 2011, 53: 493–503.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, J., Qin, W., Zhang, Z. (2012). Concepts, Challenges and Perspectives in Cancer Research. In: Primary Liver Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28702-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28702-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28701-5

  • Online ISBN: 978-3-642-28702-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics