Skip to main content

Tissue capnometry: does the answer lie under the tongue?

  • Chapter
Book cover Applied Physiology in Intensive Care Medicine 2

Abstract

Increases in tissue partial pressure of carbon dioxide (PCO2) can reflect an abnormal oxygen supply to the cells, so that monitoring tissue PCO2 may help identify circulatory abnormalities and guide their correction. Gastric tonometry aims at monitoring regional PCO2 in the stomach, an easily accessible organ that becomes ischemic quite early when the circulatory status is jeopardized. Despite substantial initial enthusiasm, this technique has never been widely implemented due to various technical problems and artifacts during measurement. Experimental studies have suggested that sublingual PCO2 (PslCO2) is a reliable marker of tissue perfusion. Clinical studies have demonstrated that high PslCO2 values and, especially, high gradients between PslCO2 and arterial PCO2 (DPsl-aCO2) are associated with impaired microcirculatory blood flow and a worse prognosis in critically ill patients. Although some questions remain to be answered about sublingual capnometry and its utility, this technique could offer new hope for tissue PCO2 monitoring in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walley KR, Wood LDH (1992) Shock. In: Hall JB, Schmidt GA, Wood LDH (eds) Principals of critical care. McGraw-Hill, New York, pp 13931416

    Google Scholar 

  2. Shoemaker WC, Appel PL, Kram HB (1988) Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 16:1117–1120

    Article  PubMed  CAS  Google Scholar 

  3. Beal AL, Cerra FB (1994) Multiple organ failure in the 1990s. JAMA 271:226–233

    Article  PubMed  CAS  Google Scholar 

  4. Deitch EA (1992) Multiple organ failure: pathophysiology and potential future therapy. Ann Surg 216:117–134

    Article  PubMed  CAS  Google Scholar 

  5. Consensus conference (1996) Tissue hypoxia: how to detect, how to correct, how to prevent. Am J Respir Crit Care Med 154:1573–1578

    Google Scholar 

  6. Russell JA, Phang PT (1994) The oxygen delivery/consumption controversy: approaches to management of the critically ill. Am J Respir Crit Care Med 149:533–537

    PubMed  CAS  Google Scholar 

  7. Marik PE, Bankov A (2003) Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 31:818–822

    Article  PubMed  Google Scholar 

  8. Marik PE, Varon J (1998) The hemo- dynamic derangements in sepsis: implications for treatment strategies. Chest 114:854–860

    Article  PubMed  CAS  Google Scholar 

  9. Marik PE (1993) Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 104:225–229

    CAS  Google Scholar 

  10. Boyd KD, Thomas SJ, Gold J, Boyd AD (1983) A prospective study of complications of pulmonary artery catheterizations in 500 consecutive patients. Chest 84:245–249

    Article  PubMed  CAS  Google Scholar 

  11. Rello J, Coll P, Net A, Prats G (1993) Infection of pulmonary artery catheters. Epidemiologic characteristics and mul- tivariate analysis of risk factors. Chest 103:132–136

    CAS  Google Scholar 

  12. Ramsey SD, Saint S, Sullivan SD, Dey L, Kelley K, Bowdle A (2000) Clinical and economic effects of pulmonary artery catheterization in nonemergent coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 14:113118

    Article  Google Scholar 

  13. Dalen JE, Bone RC (1996) Is it time to pull the pulmonary catheter? JAMA 276:916–918

    Article  PubMed  CAS  Google Scholar 

  14. Williams G, Grounds M, Rhodes A (2002) Pulmonary artery catheter. Curr Opin Crit Care 8:251–256

    Article  PubMed  Google Scholar 

  15. De Backer D (2003) Lactic acidosis. Intensive Care Med 29:699–702

    PubMed  Google Scholar 

  16. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–1510

    Article  PubMed  CAS  Google Scholar 

  17. Fiddian-Green RG, Baker S (1987) Predictive value of the stomach wall pH for complications after cardiac operations: comparison with other monitoring. Crit Care Med 15:153–156

    Article  PubMed  CAS  Google Scholar 

  18. Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, Dubin A, Schiavi E, Jorge M, Pusajo J, Klein F, San Roman E, Dorfman B, Shottlender J, Giniger R (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  19. Johnson BA, Weil MH (1991) Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med 19:1432–1438

    Article  PubMed  CAS  Google Scholar 

  20. Kivilaakso E, Ahonen J, Aronsen KF, Hockerstedt K, Kalima T, Lempinen M, Suoranta H, Vernerson E (1982) Gastric blood flow, tissue gas tension and mi- crovascular changes during hemorrhage-induced stress ulceration in the pig. Am J Surg 143:322–330

    Article  PubMed  CAS  Google Scholar 

  21. Hurley R, Chapman MV, Mythen MG (2000) Current status of gastrointestinal tonometry. Curr Opin Crit Care 6:130135

    Article  Google Scholar 

  22. Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE (2003) Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med 31:474–480

    Article  PubMed  Google Scholar 

  23. Pastores SM, Katz DP, Kvetan V (1996) Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome. Am J Gastroen- terol 91:1697–1710

    CAS  Google Scholar 

  24. Fink MP (1993) Adequacy of gut oxygenation in endotoxemia and sepsis. Crit Care Med 21:S4-S8

    Article  PubMed  CAS  Google Scholar 

  25. Antonsson JB, Boyle CC, Kruithoff KL, Wang HL, Sacristan E, Rothschild HR, Fink MP (1990) Validation of tono- metric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259:G519-G523

    PubMed  CAS  Google Scholar 

  26. Schlichtig R, Mehta N, Gayowski TJ (1996) Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J Crit Care 11:51–56

    Article  PubMed  CAS  Google Scholar 

  27. Salzman AL, Strong KE, Wang H, Wollert PS, VanderMeer TJ, Fink MP (1994) Intraluminal balloonless air tonometry: a new method for determination of gastrointestinal mucosal carbon dioxide tension. Crit Care Med 1:126134

    Google Scholar 

  28. Guzman JA, Kruse JA (1996) Development and validation of a technique for continuous monitoring of gastric intramucosal pH. Am J Respir Crit Care Med 153:694–700

    PubMed  CAS  Google Scholar 

  29. Teboul JL, Michard F, Richard C (1996) Critical analysis of venoarterial CO2 gradient as a marker of tissue hypoxia. In: Vincent JL, (ed) Yearbook of intensive care and emergency medicine. Springer, Heidelberg, pp 296–307

    Chapter  Google Scholar 

  30. Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F (2002) Small intestine intramucosal PCO(2) and micro- vascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30:379–384

    Article  PubMed  Google Scholar 

  31. Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    PubMed  CAS  Google Scholar 

  32. Schlichtig R, Heard SO (1999) Sublingual PCO2 measurement: the nitro- glycerin of monitoring? Crit Care Med 27:1380–1381

    Article  PubMed  CAS  Google Scholar 

  33. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Phy- siol 76:2443–2451

    CAS  Google Scholar 

  34. Rozenfeld RA, Dishart MK, Tonnessen TI, Schlichtig R (1996) Methods for detecting local intestinal ischemic anaerobic metabolic acidosis by PCO2. J Appl Physiol 81:1834–1842

    PubMed  CAS  Google Scholar 

  35. Raza O, Schlichtig R (2000) Metabolic component of intestinal PCO(2) during dysoxia. J Appl Physiol 89:2422–2429

    PubMed  CAS  Google Scholar 

  36. Randall HM, Cohen JJ (1966) Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 211:493–505

    PubMed  CAS  Google Scholar 

  37. Mathias DW, Clifford PS, Klopfenstein HS (1988) Mixed venous blood gases are superior to arterial blood gases in assessing acid-base status and oxygenation during acute cardiac tamponade in dogs. J Clin Invest 82:833–838

    Article  PubMed  CAS  Google Scholar 

  38. Groeneveld AB, Vermeij CG, Thijs LG (1991) Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 73:576–582

    PubMed  CAS  Google Scholar 

  39. Zhang H, Vincent JL (1993) Arterio- venous differences in PCO2 and pH are good indicators of critical hypoperfu- sion. Am Rev Respir Dis 148:867–871

    Article  PubMed  CAS  Google Scholar 

  40. Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J (1999) The Hal- dane effect—an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 83:740–746

    PubMed  CAS  Google Scholar 

  41. Hurley R, Mythen MG (2000) The Haldane effect—an explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 85:167–169

    PubMed  CAS  Google Scholar 

  42. De Backer D, Creteur J, Vincent JL (2000) The Haldane effect—an explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth 85:169

    PubMed  Google Scholar 

  43. Walley KR, Friesen BP, Humer MF, Phang PT (1998) Small bowel tonom- etry is more accurate than gastric to- nometry in detecting gut ischemia. J Appl Physiol 85:1770–1777

    PubMed  CAS  Google Scholar 

  44. Fiddian-Green RG, Amelin PM, Herrmann JB, Arous E, Cutler BS, Schiedler M, Wheeler HB, Baker S (1986) Prediction of the development of sigmoid ischemia on the day of aortic operations. Indirect measurements of intramural pH in the colon. Arch Surg 121:654–660

    CAS  Google Scholar 

  45. Schiedler MG, Cutler BS, Fiddian- Green RG (1987) Sigmoid intramural pH for prediction of ischemic colitis during aortic surgery. A comparison with risk factors and inferior mesenteric artery stump pressures. Arch Surg 122:881–886

    CAS  Google Scholar 

  46. Klok T, Moll FL, Leusink JA, Theunissen DJ, Gerrits CM, Keijer C, J (1996) The relationship between sig- moidal intramucosal pH and intestinal arterial occlusion during aortic reconstructive surgery. Eur J Vasc Endovasc Surg 11:304–307

    Article  PubMed  CAS  Google Scholar 

  47. Sato Y, Weil MH, Tang W, Sun S, Xie J, Bisera J, Hosaka H (1997) Esopha- geal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 82:558–562

    PubMed  CAS  Google Scholar 

  48. Van Hulst RA, Hasan D, Lachmann B (2002) Intracranial pressure, brain PCO2, PO2 and pH during hypo- and hyperventilation at constant mean airway pressure in pigs. Intensive Care Med 28:68–73

    Article  PubMed  Google Scholar 

  49. Lang JD Jr, Evans DJ, deFigueiredo LP, Hays S, Mathru M, Kramer GC (1999) A novel approach to monitor tissue perfusion: bladder mucosal PCO2, PO2 and pHi during ischemia and reperfusion. J Crit Care 14:93–98

    Article  PubMed  Google Scholar 

  50. Kvarstein G, Mirtaheri P, Tonnessen TI (2004) Detection of ischemia by PCO2 before adenosine triphosphate declines in skeletal muscle. Crit Care Med 32:232–237

    Article  PubMed  CAS  Google Scholar 

  51. Koga I, Stiernstrom H, Christiansson L, Wiklund L (2000) Intraperitoneal to- nometry for detection of regional enteric ischaemia. Acta Anaesthesiol Scand 44:985–990

    Article  PubMed  CAS  Google Scholar 

  52. Nakagawa Y, Weil MH, Tang W, Sun S, Yamaguchi H, Jin X, Bisera J (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:18381843

    Google Scholar 

  53. Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118:1127–1132

    Article  PubMed  CAS  Google Scholar 

  54. Pernat A, Weil MH, Tang W, Yamaguchi H, Pernat AM, Sun S, Bisera J (1999) Effects of hyper- and hypoventilation on gastric and sublingual PCO(2). J Appl Physiol 87:933937

    Google Scholar 

  55. Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–1229

    Article  PubMed  CAS  Google Scholar 

  56. Marik PE (2001) Sublingual capnogra- phy: a clinical validation study. Chest 120:923–927

    Article  PubMed  CAS  Google Scholar 

  57. Rackow EC, O'Neil P, Astiz ME, Carpati CM (2001) Sublingual cap- nometry and indexes of tissue perfusion in patients with circulatory failure. Chest 120:1633–1638

    Article  PubMed  CAS  Google Scholar 

  58. Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85:2360–2364

    PubMed  CAS  Google Scholar 

  59. Creteur J, De Backer D, Vincent JL (1997) Monitoring of gastric mucosal PCO2 by gas tonometry: in vitro and in vivo validation studies. Anesthesiol- ogy 87:504–510

    Article  CAS  Google Scholar 

  60. Grum CM, Fiddian Green RG, Pittenger GL, Grant BJ, Rothman ED, Dantzker DR (1984) Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol 56:1065–1069

    PubMed  CAS  Google Scholar 

  61. VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mu- cosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1226

    Article  PubMed  CAS  Google Scholar 

  62. Bernardin G, Lucas P, Hyvernat H, Deloffre P, Mattei M (1999) Influence of alveolar ventilation changes on calculated gastric intramucosal pH and gastric-arterial PCO2 difference. Intensive Care Med 25:269–273

    Article  PubMed  CAS  Google Scholar 

  63. De Backer D, Creteur J, Dubois MJ (2003) Microvascular alterations in patients with circulatory failure. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Heidelberg, pp 535–544

    Google Scholar 

  64. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL (2003) Determinant of sublingual PCO2 in patients with septic shock (abstract). Crit Care Med 31:A116

    Article  Google Scholar 

  65. Dantzker DR (1993) The gastrointestinal tract: the canary of the body? JAMA 270:1247–1248

    Article  PubMed  CAS  Google Scholar 

  66. Ackland G, Grocott MP, Mythen MG (2000) Understanding gastrointestinal perfusion in critical care: so near and yet so far. Crit Care 4:269–281

    Article  PubMed  CAS  Google Scholar 

  67. Deitch EA (1998) Animal models of sepsis and shock: a review and lessons learned. Shock 9:1–11

    Article  PubMed  CAS  Google Scholar 

  68. Cryer HM, Garrison RN, Kaebnick HW, Harris PD, Flint LM (1987) Skeletal microcirculatory responses to hy- perdynamic Escherichia coli sepsis in unanesthetized rats. Arch Surg 122:8692

    Google Scholar 

  69. Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083

    Article  PubMed  CAS  Google Scholar 

  70. Piper RD, Pitt-Hyde M, Li F, Sibbald WJ, Potter RF (1996) Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 154:931937

    Google Scholar 

  71. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1996) Decreased capillary density in vivo in bowel mucosa of rats with normoten- sive sepsis. J Surg Res 61:190–196

    Article  PubMed  CAS  Google Scholar 

  72. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Micro- vascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  73. Ince C, Sinaasappel M (1999) Micro- circulatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  74. Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44:488–497

    Article  PubMed  CAS  Google Scholar 

  75. Astiz ME, Rackow EC, Weil MH (1986) Oxygen delivery and utilization during rapidly fatal septic shock in rats. Circ Shock 20:281–290

    PubMed  CAS  Google Scholar 

  76. Gutierrez G, Oksenholt RL (1996) Prognostic value of gastric mucosal pH. Rean Urg 5:238–242

    Article  Google Scholar 

  77. Doglio GR, Pusajo JF, Egurrola MA, Bonfigli GC, Parra C, Vetere L, Hernandez MS, Fernandez S, Palizas F, Gutierrez G (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19:1037–1040

    Article  PubMed  CAS  Google Scholar 

  78. Ivatury RR, Simon RJ, Islam S, Fueg A, Rohman M, Stahl WM (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 183:145–154

    PubMed  CAS  Google Scholar 

  79. Ivatury RR, Simon RJ, Havriliak D, Garcia C, Greenbarg J, Stahl WM (1995) Gastric mucosal pH and oxygen delivery and oxygen consumption indices in the assessment of adequacy of resuscitation after trauma: a prospective, randomized study. J Trauma 39:128–134

    Article  PubMed  CAS  Google Scholar 

  80. Pargger H, Hampl KF, Christen P, Staender S, Scheidegger D (1998) Gastric intramucosal pH-guided therapy in patients after elective repair of in- frarenal abdominal aneurysms: is it beneficial? Intensive Care Med 24:769776

    Google Scholar 

  81. Gomersall CD, Joynt GM, Freebairn RC, Hung V, Buckley TA, Oh TE (2000) Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med 28:607614

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maciel, A.T., Creteur, J., Vincent, JL. (2012). Tissue capnometry: does the answer lie under the tongue?. In: Pinsky, M.R., Brochard, L., Mancebo, J., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28233-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28233-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28232-4

  • Online ISBN: 978-3-642-28233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics