Skip to main content

Sensory Systems of Epidermal Keratinocytes

  • Chapter
  • First Online:

Abstract

It is well known that epidermal keratinocytes form a water-impermeable barrier at the skin surface. However, recent studies suggest that keratinocytes also have a variety of sensory systems for a wide range of environmental factors, including humidity, temperature, mechanical stress, and visible light. Receptor proteins, activated by these environmental factors, are expressed in keratinocytes. Interaction between keratinocytes and nerve fibers has also been reported. Moreover, a series of neurotransmitter receptors, which play key roles in information processing in the central nervous system, are expressed in keratinocytes. Thus, epidermal keratinocytes might have both sensory and information-processing functions at the surface of the body. In this chapter, I deal with these new aspects of epidermal keratinocytes and also discuss the hypothesis that epidermal keratinocytes serve as a functional interface between the body and the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akiyama T, Carstens MI, Carstens E (2010) Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain 151:378–383

    Article  PubMed  CAS  Google Scholar 

  2. Asakawa M, Yoshioka T, Matsutani T et al (2006) Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126:2664–2672

    Article  PubMed  CAS  Google Scholar 

  3. Ashida Y, Denda M (2003) Dry environment increases mast cell number and histamine content in dermis in hairless mice. Br J Dermatol 149:240–247

    Article  PubMed  CAS  Google Scholar 

  4. Ashida Y, Ogo M, Denda M (2001) Epidermal IL-1 alpha generation is amplified at low humidities: implications for the pathogenesis of inflammatory dermatoses. Br J Dermatol 144:238–243

    Article  PubMed  CAS  Google Scholar 

  5. Athenstaedt H, Claussen H, Schaper D (1982) Epidermis of human skin: pyroelectric and piezoelectric sensor layer. Science 216:1018–1020

    Article  PubMed  CAS  Google Scholar 

  6. Atoyan R, Shander D, Botchkarvera NV (2009) Non-neural expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129:2312–2315

    Article  PubMed  CAS  Google Scholar 

  7. Baker AT, Jaffe LE, Vanable JW (1982) The glabrous epidermis of cavies confaius a powerful battery. Am J Physiol 242:R358–R366

    Google Scholar 

  8. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  PubMed  CAS  Google Scholar 

  9. Bang S, Kim KY, Yoo S, Kim YG, Hwang SW (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 26:2516–2523

    Article  PubMed  Google Scholar 

  10. Boutin AT, Weidemann A, Fu Z, Mesropian L, Gradin K, Jamora C, Wiesener M, Eckardt KU, Koch CJ, Ellies LG, Haddad G, Haase VH, Simon MC, Poellinger L, Powell FL, Johnson RS (2008) Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell 133:223–234

    Article  PubMed  CAS  Google Scholar 

  11. Burnstock G, Williams M (2000) P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 295:862–869

    PubMed  CAS  Google Scholar 

  12. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Characteristics of self-organizing systems. In: Anderson PW et al (eds) Self-organization in biological systems. Princeton University Press, Princeton, pp 29–46

    Google Scholar 

  13. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  14. Chung MK, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278:32037–32046

    Article  PubMed  CAS  Google Scholar 

  15. Cockayne MJ, Hamilton SG, Zhu QM, Dunn PM, Zhone Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstocks G, McMason SB, Ford APDW (2000) Urinary bladder hyporeflexia and reduced pain-related behavior in P2X3-deficient mice. Nature 407:1011–1015

    Article  PubMed  CAS  Google Scholar 

  16. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Jonathan SE, Klein T, Rizzo JF (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Eng J Med 332:6–11

    Article  CAS  Google Scholar 

  17. Damasio AR (1994) The body-minded brain. In: Descartes’ error. Emotion, reason, and the human brain. Penguin Putnam, New York, pp 223–243

    Google Scholar 

  18. Denda M (2000) Influence of dry environment on epidermal function. J Dermatol Sci 24(Suppl 1):S22–S28

    Article  PubMed  CAS  Google Scholar 

  19. Denda M (2001) Epidermal proliferative response induced by sodium dodecyl sulphate varies with environmental humidity. Br J Dermatol 145:252–257

    Article  PubMed  CAS  Google Scholar 

  20. Denda M, Denda S (2007) Air-exposed keratinocytes exhibited intracellular oscillation. Skin Res Technol 13:195–201

    Article  PubMed  Google Scholar 

  21. Denda M, Fuziwara S (2008) Visible radiation affects epidermal permeability barrier recovery: selective effects of red and blue light. J Invest Dermatol 128:1335–1336

    Article  PubMed  CAS  Google Scholar 

  22. Denda M, Kumazawa N (2002) Negative electric potential induces epidermal lamellar body secretion and accelerates skin barrier recovery after barrier disruption. J Invest Dermatol 118:65–72

    Article  PubMed  CAS  Google Scholar 

  23. Denda M, Kumazawa N (2010) Effects of metals on skin permeability barrier recovery. Exp Dermatol 19:e124–e127

    Article  PubMed  Google Scholar 

  24. Denda M, Nakatani M (2010) Acceleration of permeability barrier recovery by exposure of skin to 10–30 kilohertz sound. Br J Dermatol 162:503–507

    Article  PubMed  CAS  Google Scholar 

  25. Denda M, Tsutsumi M (2011) Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. In: Islam MS (ed) Transient receptor potential channels. Advances in experimental medicine and biology, vol 704. Springer, Berlin, pp 847–860

    Chapter  Google Scholar 

  26. Denda M, Kitamura K, Elias PM, Feingold KR (1997) Trans-4-(aminomethyl)cyclohexane carboxylic acid (t-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol 109:84–90

    Article  PubMed  CAS  Google Scholar 

  27. Denda M, Sato J, Masuda Y, Tsuchiya T, Kuramoto M, Elias PM, Feingold KR (1998) Exposure to a dry environment enhances epidermal permeability barrier function. J Invest Dermatol 111:858–863

    Article  PubMed  CAS  Google Scholar 

  28. Denda M, Sato J, Tsuchiya T, Elias PM, Feingold KR (1998) Low humidity stimulates epidermal DNA synthesis and amplifies the hyperproliferative response to barrier disruption: implication for seasonal exacerbations of inflammatory dermatoses. J Invest Dermatol 111:873–878

    Article  PubMed  CAS  Google Scholar 

  29. Denda M, Tshuchiya T, Hosoi J, Koyama J (1998) Immobilization-induced and crowded environment-induced stress delay barrier recovery in murine skin. Br J Dermatol 138:780–785

    Article  PubMed  CAS  Google Scholar 

  30. Denda M, Hosoi J, Ashida Y (2000) Visual imaging of ion distribution in human epidermis. Biochem Biophys Res Commun 272:134–137

    Article  PubMed  CAS  Google Scholar 

  31. Denda M, Tsuchiya T, Elias PM, Feingold KR (2000) Stress alters cutaneous permeability barrier homeostasis. Am J Physiol 278:R367–R372

    CAS  Google Scholar 

  32. Denda M, Ashida Y, Inoue K, Kumazawa K (2001) Skin surface electric potential induced by ion-flux through epidermal cell layers. Biochem Biophys Res Commun 284:112–117

    Article  PubMed  CAS  Google Scholar 

  33. Denda M, Fuziwara S, Inoue K, Denda S, Akamatsu H, Tomitaka A, Matsunaga K (2001) Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun 285:1250–1252

    Article  PubMed  CAS  Google Scholar 

  34. Denda M, Inoue K, Fuziwara S et al (2002) P2X purinergic receptor antagonist accelerates skin barrier repair and prevents epidermal hyperplasia induced by skin barrier disruption. J Invest Dermatol 119:1034–1040

    Article  PubMed  CAS  Google Scholar 

  35. Denda M, Fuziwara S, Inoue K (2003) Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Invest Dermatol 121:362–367

    Article  PubMed  CAS  Google Scholar 

  36. Denda M, Tomitaka M, Akamatsu H, Matsunaga K (2003) Altered distribution of calcium in facial ­epidermis of aged adults. J Invest Dermatol 21:1557–1558

    Article  Google Scholar 

  37. Denda M, Nakanishi K, Kumazawa N (2005) Topical application of ionic polymers affects skin permeability barrier homeostasis. Skin Pharmacol Physiol 18:36–41

    Article  PubMed  CAS  Google Scholar 

  38. Denda M, Fuziwara S, Hibino T (2006) Expression of voltage-gated calcium channel subunit αC1 in epidermal keratinocytes and effects of agonist and antagonists of the channel on skin barrier homeostasis. Exp Dermatol 15:455–460

    Article  PubMed  CAS  Google Scholar 

  39. Denda M, Nakatani M, Ikeyama K, Tsutsumi M, Denda S (2007) Epidermal keratinocytes as the forefront of the sensory system. Exp Dermatol 16:157–161

    Article  PubMed  CAS  Google Scholar 

  40. Denda M, Sokabe T, Tominaga T, Tominaga M (2007) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659

    Article  PubMed  CAS  Google Scholar 

  41. Denda M, Tsutsumi M, Denda S (2010) Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal pro­liferation induced by barrier insult: the role of cold-sensitive TRP receptors in epidermal permeability barrier homeostasis. Exp Dermatol 19:791–795

    Article  PubMed  CAS  Google Scholar 

  42. Denda M, Tsutsumi M, Goto M, Ikeyama K, Denda S (2010) Topical application of TRPA1 agonists and brief cold exposure accelerate skin permeability barrier recovery. J Invest Dermatol 130:1942–1945

    Article  PubMed  CAS  Google Scholar 

  43. Dhaka A, Viswanath V, Patapoutian A (2006) TRP ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  PubMed  CAS  Google Scholar 

  44. Dhaka A, Uzzell V, Dubin AE, Mathur J, Petrus M, Bandell M, Patapoutian A (2009) TRPV1 is activated by both acidic and basic pH. J Neurosci 29:153–158

    Article  PubMed  CAS  Google Scholar 

  45. Elias PM, Ahn SK, Denda M, Brown BE, Crumurine D, Kinutai LK, Komuves L, Lee SH, Feingold KR (2002) Modulations in epidermal calcium regulate the expression of differentiation-specific proteins. J Invest Dermatol 119:1128–1136

    Article  PubMed  CAS  Google Scholar 

  46. Feldman Y, Puzenko A, Ben Ishai P et al (2008) Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. Phys Rev Lett 100:128102

    Article  PubMed  CAS  Google Scholar 

  47. Forslind B, Werner-Linde Y, Lindberg M, Pallon J (1999) Elemental analysis mirrors epidermal differentiation. Acta Derm Venereol 79:12–17

    Article  PubMed  CAS  Google Scholar 

  48. Fuziwara S, Ogawa K, Aso D, Yoshizawa D, Takata S, Denda M (2004) Barium sulfate with a negative z potential accelerates skin permeable barrier recovery and prevents epidermal hyperplasia induced by barrier disruption. Br J Dermatol 151:557–564

    Article  PubMed  CAS  Google Scholar 

  49. Fuziwara S, Suzuki A, Inoue K, Denda M (2005) Dopamine D2-like receptor agonists accelerate barrier repair and inhibit the epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 125:783–789

    Article  PubMed  CAS  Google Scholar 

  50. Gick B, Derrick D (2009) Aero-tactile integration in speech perception. Nature 462:502–504

    Article  PubMed  CAS  Google Scholar 

  51. Goto M, Ikeyama K, Tsutsumi M, Denda S, Denda M (2010) Calcium ion propagation in cultured keratinocytes and other cells in skin in response to hydraulic pressure stimulation. J Cell Physiol 224:229–233

    PubMed  CAS  Google Scholar 

  52. Goto M, Ikeyama K, Tsutsumi M, Denda S, Denda M (2011) Phosphodiesterase inhibitors block the acceleration of skin permeability barrier repair by red light. Exp Dermatol 20:568–571

    Article  PubMed  CAS  Google Scholar 

  53. Hachem JP, Houben E, Crumrine D, Man MQ, Schurer N, Roelandt T, Choi EH, Uchida Y, Brown BE, Feingold KR, Elias PM (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126:2074–2086

    Article  PubMed  CAS  Google Scholar 

  54. Heffner RS (2004) Primate hearing from a mammalian perspective. Anat Rec A Discov Mol Cell Evol Biol 281:1111–1122

    Article  PubMed  Google Scholar 

  55. Hosoi J, Hariya T, Denda M, Tsuchiya T (2000) Regulation of the cutaneous allergic reaction by humidity. Contact Dermatitis 42:81–84

    Article  PubMed  CAS  Google Scholar 

  56. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279:35741–35748

    Article  PubMed  CAS  Google Scholar 

  57. Hu HZ, Xiao R, Wang C et al (2006) Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 208:201–212

    Article  PubMed  CAS  Google Scholar 

  58. Huang SM, Lee H, Chung MK et al (2008) Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28:13727–13737

    Article  PubMed  CAS  Google Scholar 

  59. Ikeyama K, Fuziwara S, Denda M (2007) Topical application of neuronal nitric oxide synthase inhibitor accelerates cutaneous barrier recovery and prevents epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 127:1713–1719

    PubMed  CAS  Google Scholar 

  60. Ikeyama K, Denda S, Tsutsumi M, Denda M (2010) Neuronal nitric oxide synthase in epidermis is involved in cutaneous circulatory response to mechanical stimulation. J Invest Dermatol 130:1158–1166

    Article  PubMed  CAS  Google Scholar 

  61. Inoue K, Koizumi S, Fuziwara S, Denda S, Inoue K, Denda M (2002) Functional vanilloid receptors in cultured normal human keratinocytes. Biochem Biophys Res Commun 291:124–129

    Article  PubMed  CAS  Google Scholar 

  62. Inoue K, Denda M, Tozaki H, Fujishita K, Koizumi S, Inoue K (2005) Characterization of multiple P2X receptors in cultured normal human epidermal keratinocytes. J Invest Dermatol 124:756–763

    Article  PubMed  CAS  Google Scholar 

  63. Ishiuji Y, Coghill RC, Patel TS, Oshiro Y, Kraft RA, Yosipovitch G (2009) Distinct patterns of brain activity evoked by histamine-induced itch reveal an association with itch intensity and disease severity in atopic dermatitis. Br J Dermatol 161:1072–1080

    Article  PubMed  CAS  Google Scholar 

  64. Johansson RS, Trulsson M, Olsson KA, Westberg K-G (1988) Mechanoreceptor activity from the human face and oral mucosa. Exp Brain Res 72:204–208

    Article  PubMed  CAS  Google Scholar 

  65. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  66. Kao JS, Garg A, Mao-Qiang M, Crumrine D, Ghadially R, Feingold KR, Elias PM (2001) Testosterone perturbs epidermal permeability barrier homeostasis. J Invest Dermatol 116:443–451

    Article  PubMed  CAS  Google Scholar 

  67. Katagiri C, Sato J, Nomura J, Denda M (2003) Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. J Dermatol Sci 31:29–35

    Article  PubMed  CAS  Google Scholar 

  68. Katsuta Y, Iida T, Inomata S et al (2005) Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis. J Invest Dermatol 124:1008–1013

    Article  PubMed  CAS  Google Scholar 

  69. Kawai N, Honda M, Nakamura S et al (2001) Catecholamines and opioid peptides increase in plasma in humans during possession trances. Neuroreport 12:3419–3423

    Article  PubMed  CAS  Google Scholar 

  70. Kawai E, Nakanishi J, Kumazawa N, Ozawa K, Denda M (2008) Skin surface electric potential as an indicator of skin condition: a new, non-invasive method to evaluate epidermal condition. Exp Dermatol 17:688–692

    Article  PubMed  Google Scholar 

  71. Kawai E, Kumazawa N, Ozawa K, Denda M (2011) Skin surface electrical potential as an indicator of skin condition: observation of surfactant-induced dry skin and middle-aged skin. Exp Dermatol 20:757–759

    Article  PubMed  Google Scholar 

  72. Koizumi S, Fijishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K (2004) Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 380:329–338

    Article  PubMed  CAS  Google Scholar 

  73. Lee YM, Kim YK, Chung JH (2009) Increased expression of TRPV1 channel in intrinsically aged and photoaged human skin in vivo. Exp Dermatol 18:431–436

    Article  PubMed  CAS  Google Scholar 

  74. Lee YM, Kim YK, Kim KH et al (2009) A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J Cell Physiol 219:766–775

    Article  PubMed  CAS  Google Scholar 

  75. Li WH, Lee YM, Kim JY et al (2007) Transient receptor potential vanilloid-1 mediates heat-shock-induced matrix metalloproteinase-1 expression in human epidermal keratinocytes. J Invest Dermatol 127:2328–2335

    Article  PubMed  CAS  Google Scholar 

  76. Loomis JM, Collins CC (1978) Sensitivity to shifts of a point stimulus; an instance of tactile hyperacuity. Percept Psychophys 24:487–492

    Article  PubMed  CAS  Google Scholar 

  77. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929–934

    Article  PubMed  CAS  Google Scholar 

  78. Mauro T, Bench G, Sidderas-Haddad E et al (1998) Acute barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis: quantitative measurement using PIXE. J Invest Dermatol 111:1198–1201

    Article  PubMed  CAS  Google Scholar 

  79. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci USA 104:13525–13530

    Article  PubMed  CAS  Google Scholar 

  80. Moqrich A, Hwang SW, Earley TJ et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    Article  PubMed  CAS  Google Scholar 

  81. Nakatani M, Kawasoe T, Denda M (2011) Sex difference in human fingertip recognition of micron-level randomness as unpleasant. Int J Cosmet Sci 33:346–350

    Article  PubMed  CAS  Google Scholar 

  82. Neuman E, Blanton R (1970) The early history of electrodermal research. Psychophysiology 6:453–475

    Article  Google Scholar 

  83. Neumann ID (2007) Oxytocin: the neuropeptide of love reveals some of its secrets. Cell Metab 5:231–233

    Article  PubMed  CAS  Google Scholar 

  84. Nishimura KY, Isseroff RR, Nuccitelli R (1996) Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 109:199–207

    PubMed  CAS  Google Scholar 

  85. Nordin M (1990) Low threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J Physiol 426:229–240

    PubMed  CAS  Google Scholar 

  86. Okano T, Yoshizawa T, Fukada Y (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature 372:94–97

    Article  PubMed  CAS  Google Scholar 

  87. Oohashi T, Nishina E, Honda M et al (2000) Inaudible high-frequency sounds affect brain activity: hypersonic effect. J Neurophysiol 83:3548–3558

    PubMed  CAS  Google Scholar 

  88. Oohashi T, Kawai N, Nishina E et al (2006) The role of biological system other than auditory air-conduction in the emergence of the hypersonic effect. Brain Res 1073–1074:339–347

    Article  PubMed  CAS  Google Scholar 

  89. Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8:55–68

    Article  PubMed  CAS  Google Scholar 

  90. Peier AM, Moqrich A, Hergarden AC et al (2002) A trp channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  91. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049

    Article  PubMed  CAS  Google Scholar 

  92. Sato J, Denda M, Ashida Y, Koyama J (1998) Loss of water from the stratum corneum induces epidermal DNA synthesis in hairless mice. Arch Dermatol Res 290:634–637

    Article  PubMed  CAS  Google Scholar 

  93. Sato J, Denda M, Nakanishi J (1998) Dry condition affects desquamation of stratum corneum in vivo. J Dermatol Sci 18:163–169

    Article  PubMed  CAS  Google Scholar 

  94. Sato J, Yanai M, Hirao T, Denda M (2000) Water content and thickness of stratum corneum contribute to skin surface morphology. Arch Dermatol Res 292:412–417

    Article  PubMed  CAS  Google Scholar 

  95. Sato J, Denda M, Chang S, Elias PM, Feingold KR (2002) Abrupt decreases in environmental humidity induce abnormalities in permeability barrier homeostasis. J Invest Dermatol 119:900–904

    Article  PubMed  CAS  Google Scholar 

  96. Sauer GC, Hall JC (1996) Seasonal skin diseases. In: Sauer GC, Hall JC (eds) Manual of skin diseases. Lippincott-Raven, Philadelphia, pp 23–28

    Google Scholar 

  97. Scheidemann F, Löser M, Niedermeier A, Kromminga A, Therrien JP, Vogel J, Pfützner W (2008) The skin as a biofactory for systemic secretion of erythropoietin: potential of genetically modified keratinocytes and fibroblasts. Exp Dermatol 17:481–488

    Article  PubMed  CAS  Google Scholar 

  98. Shephered GM (1994) The somatic senses. In: Shephered GM (ed) Neurobiology. Oxford University Press, Oxford, pp 265–293

    Google Scholar 

  99. Solessio E, Engbretson GA (1993) Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature 364:442–445

    Article  PubMed  CAS  Google Scholar 

  100. Southall MD, Li T, Gharibova LS et al (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222

    Article  PubMed  CAS  Google Scholar 

  101. Steinhoff M, Bíró T (2009) A TR(I)P to pruritus research: role of TRPV3 in inflammation and itch. J Invest Dermatol 129:531–535

    Article  PubMed  CAS  Google Scholar 

  102. Story GM, Peier AM, Reeve AJ et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  PubMed  CAS  Google Scholar 

  103. Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  104. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  PubMed  CAS  Google Scholar 

  105. Tsutsumi M, Denda M (2007) Paradoxical effects of beta-estradiol on epidermal permeability barrier homeostasis. Br J Dermatol 157:776–779

    Article  PubMed  CAS  Google Scholar 

  106. Tsutsumi M, Denda S, Inoue K, Ikeyama K, Denda M (2009) Calcium ion gradients and dynamics in cultured skin slices of rat hind-paw in response to stimulation with ATP. J Invest Dermatol 129:584–589

    Article  PubMed  CAS  Google Scholar 

  107. Tsutsumi M, Ikeyama K, Denda S, Nakanishi J, Fuziwara S, Aoki H, Denda M (2009) Expressions of rod and cone photoreceptor-like proteins in human epidermis. Exp Dermatol 18:567–570

    Article  PubMed  CAS  Google Scholar 

  108. Tsutsumi M, Denda S, Ikeyama K, Goto M, Denda M (2010) Exposure to low temperature induces elevation of intracellular calcium in cultured human keratinocytes. J Invest Dermatol 130:1945–1948

    Article  PubMed  CAS  Google Scholar 

  109. Tsutsumi M, Kitahata H, Nakata S, Sanno Y, Nagayama M, Denda M (2010) Mathematical analysis of intercellular calcium propagation induced by ATP. Skin Res Technol 16:146–150

    Article  PubMed  Google Scholar 

  110. Tsutsumi M, Goto M, Denda S, Denda M (2011) Morphological and functional differences in co-culture system of keratinocytes and dorsal root ganglion-derived cells depending on time of seeding. Exp Dermatol 20:464–467

    Article  PubMed  Google Scholar 

  111. Tsutsumi M, Kumamoto J, Denda M (2011) Intracellular calcium response to high temperature is similar in undifferentiated and differentiated cultured human keratinocytes. Exp Dermatol 20:839–840

    Article  PubMed  Google Scholar 

  112. Tsutusmi M, Inoue K, Denda S, Ikeyama K, Goto M, Denda M (2009) Mechanical-stimulation-evoked calcium waves in proliferating and differentiated human keratinocytes. Cell Tissue Res 338:99–106

    Article  CAS  Google Scholar 

  113. Vallbo A, Olausson H, Wessberg J, Norrsell UA (1993) System of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Res 628:301–304

    Article  PubMed  CAS  Google Scholar 

  114. Vallbo AB, Olausson H, Wessberg J (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81:2753–2763

    PubMed  CAS  Google Scholar 

  115. Venables PH, Martin I (1967) The relation of palmar sweat gland activity to level of skin potential and conductance. Psychophysiology 3:302–311

    Article  PubMed  CAS  Google Scholar 

  116. Verrillo RT (1979) Change in vibrotactile thresholds as a function of age. Sens Processes 3:49–59

    PubMed  CAS  Google Scholar 

  117. Vukelic S, Stojadinovic O, Pastar I, Rabach M, Krzyzanowska A, Lebrun E, Davis SC, Resnik S, Brem H, Tomic-Canic M (2011) Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J Biol Chem 286:10265–10275

    Article  PubMed  CAS  Google Scholar 

  118. Wang L, Hillinges M, Jernberg T, Wiegleb-Edstrom D, Johansson O (1990) Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin. Cell Tissue Res 261:25–33

    Article  PubMed  CAS  Google Scholar 

  119. Wilkinson JD, Rycroft RJ (1992) Contact dermatitis. In: Burton JL, Ebling FJG (eds) Champion relative humidity, 5th edn, Textbook of dermatology. Blackwell Scientific Publications, Oxford, pp 614–615

    Google Scholar 

  120. Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM (2011) TRPA1 is required for histamine-independent. Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602

    Article  PubMed  CAS  Google Scholar 

  121. Xu H, Delling M, Jun JC et al (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9:628–635

    Article  PubMed  CAS  Google Scholar 

  122. Yagi R, Nishina E, Honda M et al (2003) Modulatory effect of inaudible high-frequency sounds on human acoustic perception. Neurosci Lett 351:191–195

    Article  PubMed  CAS  Google Scholar 

  123. Yamada D, Maeno T, Yamada Y (2002) Artificial finger skin having ridges and distributed tactile sensors used for grasp force control. J Robot Mechatronics 14:140–146

    Google Scholar 

  124. Yoshioka T, Imura K, Asakawa M et al (2009) Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J Invest Dermatol 129:714–722

    Article  PubMed  CAS  Google Scholar 

  125. Zhao X, Haeseleer F, Fariss RN, Huang J, Baehr W, Milam AH, Palczewski K (1997) Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Vis Neurosci 14:225–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Denda Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denda, M. (2012). Sensory Systems of Epidermal Keratinocytes. In: Lodén, M., Maibach, H. (eds) Treatment of Dry Skin Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27606-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27606-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27605-7

  • Online ISBN: 978-3-642-27606-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics