Skip to main content

Molecular Organization of the Lipid Matrix in Stratum Corneum and Its Relevance for the Protective Functions of Human Skin

  • Chapter
  • First Online:
Treatment of Dry Skin Syndrome
  • 2559 Accesses

Abstract

The extracellular matrix of stratum corneum participates actively in the defensive performance of human skin. The unique lamellar organization of the lipids, resulting from their exceptional composition, ensures the low permeability of the skin for xenobiotics, limits the loss of water from the living tissues, and contributes to the formation of a barrier layer of high mechanical integrity, flexibility, and cohesive strength. Both crystalline and disordered lipid phases exist in the lamellae, but their 3D organization remains to be definitely established. Understanding the correlation between composition, molecular organization, and properties of the lipid matrix helps to elucidate the etymology of skin disorders and diseases and offers the potential to develop new, efficient skin therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winsor T, Burch GE (1944) Differential roles of layers in human epigastric skin on diffusion rate of water. Arch Intern Med 74:428–435

    Google Scholar 

  2. Blank IH (1952) Factors which influence the water content of the stratum corneum. J Invest Dermatol 18:433–440

    PubMed  CAS  Google Scholar 

  3. Elias PM (2004) The epidermal permeability barrier: from the early days at Harvard to emerging concepts. J Invest Dermatol 122:xxxvi–xxxix

    PubMed  CAS  Google Scholar 

  4. Kligman AM (2006) A brief history of how the dead stratum corneum became alive. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor and Francis, New York, pp 15–24

    Google Scholar 

  5. Kligman AM (2011) Corneobiology and corneotherapy – a final chapter. Int J Cosm Sci 33:197–209

    Google Scholar 

  6. Elias PM (2006) Defensive functions of the Stratum corneum: Integrative aspects. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor and Francis, New York, pp 5–14

    Google Scholar 

  7. Brody I (1966) Intercellular space in normal human stratum corneum. Nature 209:472–476

    PubMed  CAS  Google Scholar 

  8. Harding CR (2004) The stratum corneum: structure and function in health and disease. Dermatol Ther 17:6–15

    PubMed  Google Scholar 

  9. Bouwstra JA, Ponec M (2006) The skin barrier in healthy and diseased state. Biochim Biophys Acta-Biomembranes 1758:2080–2095

    CAS  Google Scholar 

  10. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125:183–200

    PubMed  CAS  Google Scholar 

  11. Di Nardo A, Gallo RL (2006) Cutaneous barriers in defense against microbial invasion. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor and Francis, New York, pp 363–378

    Google Scholar 

  12. Rawlings AV (2006) Sources and role of Stratum corneum hydration. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor and Francis, New York, pp 399–426

    Google Scholar 

  13. Nickoloff BJ, Stevens SR (2006) What have we learned in dermatology from the biologic therapies? J Am Acad Dermatol 54:S143–S151

    PubMed  Google Scholar 

  14. Wertz PW, van der Bergh B (1998) The physical, chemical, and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 91:85–96

    CAS  Google Scholar 

  15. Wertz PW, Downing DT (1991) Epidermal lipids. In: Goldsmith LA (ed) Physiology, biochemistry, and molecular biology of the skin. Oxford University Press, Oxford, pp 205–236

    Google Scholar 

  16. Feingold KR (2007) The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 48:2531–2546

    PubMed  CAS  Google Scholar 

  17. Wertz PW, Swartzendruber DC, Madison KC et al (1987) Composition and morphology of epidermal cyst lipids. J Invest Dermatol 89:419–425

    PubMed  CAS  Google Scholar 

  18. Masukawa Y, Narita H, Shimizu E et al (2008) Characterization of overall ceramide species in human stratum corneum. J Lipid Res 49:1466–1476

    PubMed  CAS  Google Scholar 

  19. Harding CR, Moore DJ, Rawlings AV (2010) Ceramides and the skin. In: Baran R, Maibach HI (eds) Textbook of cosmetic dermatology. Informa Healthcare, New York, pp 150–164

    Google Scholar 

  20. van Smeden J, Hoppel L, van der Heijden R et al (2011) LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res 52:1211–1221

    PubMed  Google Scholar 

  21. Motta S, Monti M, Sesana S et al (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1182:147–151

    PubMed  CAS  Google Scholar 

  22. Wertz PW, Madison KC, Downing DT (1989) Covalently bound lipids of human stratum corneum. J Invest Dermatol 92:109–111

    PubMed  CAS  Google Scholar 

  23. Hill J, Paslin D, Wertz PW (2006) A new covalently bound ceramide from human stratum corneum – w-hydroxyacylphytosphingosine. Int J Cosmet Sci 28:225–230

    PubMed  CAS  Google Scholar 

  24. Wertz PW, Miethke MC, Long SA et al (1985) The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol 84:410–412

    PubMed  CAS  Google Scholar 

  25. Dahlén B, Pascher I (1979) Thermotropic phase behaviour of tetracosanoylphytosphingosine. Chem Phys Lipids 24:119–133

    Google Scholar 

  26. Kiselev MA, Ryabova NY, Balagurov AM et al (2005) New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur Biophys J 34:1030–1040

    PubMed  CAS  Google Scholar 

  27. Brief E, Kwak S, Cheng JTJ et al (2009) Phase behavior of an equimolar mixture of N-palmitoyl-d-erythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. Langmuir 25:7523–7532

    PubMed  CAS  Google Scholar 

  28. O’Malley B, Moore DJ, Noro M, et al. (2005) Towards a mechanical model of skin: Insights into Stratum corneum mechanical properties from hierarchical models of lipid organization. Mat Res Soc Symp Proc 844: Y5.7

    Google Scholar 

  29. Pascher I (1976) Molecular arrangements in sphingolipids: conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451

    PubMed  CAS  Google Scholar 

  30. Rerek ME, Moore DJ (2007) Skin lipid structure: Insight into hydrophobic and hydrophilic driving forces for self-assembly using IR spectroscopy. In: Rhein LD, Schlossman M, O’Lenick A, Somasundran P (eds) Surfactants in personal care products and decorative cosmetics. CRC Press, Boca Raton, Surfactant science series, pp 189–209

    Google Scholar 

  31. Mendelsohn R, Rerek ME, Moore DJ (2000) Infrared spectroscopy and microscopic imaging of stratum corneum models and skin. Phys Chem Chem Phys 2:4651–4657

    CAS  Google Scholar 

  32. Norlén L, Nicander I, Lundsjö A et al (1998) A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch Dermatol Res 290:508–516

    PubMed  Google Scholar 

  33. Fettiplace R, Haydon DA (1980) Water permeability of lipid membranes. Physiol Rev 60:510–550

    PubMed  CAS  Google Scholar 

  34. Wertz PW (1996) Integral lipids in hair and Stratum corneum. In: Jolles P, Zahn H, Hocker H (eds) Hair: Biology and structure. Birkhauser Verlag, Basel, pp 227–238

    Google Scholar 

  35. Daly TA, Wang M, Regen SL (2011) The origin of cholesterol’s condensing effect. Langmuir 27:2159–2161

    CAS  Google Scholar 

  36. de Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 106:3654–3658

    PubMed  Google Scholar 

  37. Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

    PubMed  CAS  Google Scholar 

  38. Leathes JB (1925) Croonian lectures on the role of fats in vital phenomena. Lancet 205:853–856

    Google Scholar 

  39. Róg T, Pasenkiewicz-Gierula M, Vattulainen I et al (2009) Ordering effects of cholesterol and its analogues. Biochim Biophys Acta 1788:97–121

    PubMed  Google Scholar 

  40. Takahashi H, Sinoda K, Hatta I (1996) Effects of cholesterol on the lamellar and the inverted hexagonal phases of dielaidoylphosphatidylethanolamine. Biochim Biophys Acta 1298:209–216

    Google Scholar 

  41. McMullen TPW, McElhaney RN (1995) New aspects of the interaction of cholesterol with DPPC bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta 1234:90–98

    PubMed  Google Scholar 

  42. Feingold KR (2009) The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res 50:S417–S422

    PubMed  Google Scholar 

  43. Krahn-Bertil E, Hazane-Puch F, Lassel T et al (2009) Skin moisturization by dermonutrition. In: Rawlings AV, Leyden JJ (eds) Skin moisturization. Informa Healthcare USA, Inc., New York, pp 411–425

    Google Scholar 

  44. Martinez RI, Peters A (1971) Membrane-coating granules and membrane modifications in keratinizing epithelia. Am J Anat 130:93–120

    Google Scholar 

  45. Lavker RM (1976) Membrane coating granules: the fate of the discharged lamellae. J Ultrastruct Res 55:79–86

    PubMed  CAS  Google Scholar 

  46. Elias PM, Goerke J, Friend DS (1977) Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol 69:535–546

    PubMed  CAS  Google Scholar 

  47. Madison KC, Swartzendruber DC, Wertz PW et al (1987) Presence of intact intercellular lamellae in the upper layers of the stratum corneum. J Invest Dermatol 88:714–718

    PubMed  CAS  Google Scholar 

  48. Bouwstra JA (2009) Lipid organization of the skin barrier. In: Rawlings AV, Leyden JJ (eds) Skin moisturization. Informa Healthcare USA, Ins, New York, pp 17–40

    Google Scholar 

  49. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nature Rev Molec Cell Biol 9:112–124

    Google Scholar 

  50. Pilgram GSK, Engelsma-van Pelt AM, Bouwstra JA et al (1999) Electron diffraction provides new information on human stratum corneum lipid organization studied in relation to depth and temperature. J Invest Dermatol 113:403–409

    PubMed  CAS  Google Scholar 

  51. Friberg SF, Osborne DW (1985) Small angle X-ray diffraction patterns of stratum corneum and a model structure for its lipids. J Dispers Sci Technol 6:485–495

    CAS  Google Scholar 

  52. Schroeter A, Kessner D, Kiselev MA et al (2009) Basic nanostructure of stratum corneum lipid matrices based on ceramides [EOS] and [AP]: a neutron diffraction study. Biophys J 97:1104–1114

    CAS  Google Scholar 

  53. Groen D, Poole D, Gooris GS et al (2011) Is an orthorhombic lateral packing and a proper lamellar organization important for the skin barrier function? Biochim Biophys Acta 1808:1529–1537

    PubMed  CAS  Google Scholar 

  54. Swartzendruber DC (1992) Studies of epidermal lipids using electron microscopy. Semin Dermatol 11:157–161

    PubMed  CAS  Google Scholar 

  55. Swartzendruber DC, Wertz PW, Kitko DJ et al (1989) Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J Invest Dermatol 92:251–257

    PubMed  CAS  Google Scholar 

  56. Schreiner V, Gooris GS, Pfeiffer S et al (2000) Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J Invest Dermatol 114:654–660

    PubMed  CAS  Google Scholar 

  57. Norlén L (2010) Molecular cryo-electron tomography of skin. Open Derm J 4:46–47

    Google Scholar 

  58. Al-Amoudi A, Dubochet J, Norlén L (2005) Nanostructure of the epidermal extracellular space as observed by cryo-electron microscopy of vitreous sections of human skin. J Invest Dermatol 124:764–777

    PubMed  CAS  Google Scholar 

  59. Percot A, Lafleur M (2001) Direct observation of domains in model stratum corneum lipid mixtures by Raman microspectroscopy. Biophys J 81:2144–2153

    PubMed  CAS  Google Scholar 

  60. Wegener M, Neubert RHH, Rettig W et al (1997) Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. III. Mixtures of ceramides and cholesterol. Chem Phys Lipids 88:73–82

    PubMed  CAS  Google Scholar 

  61. Bommannan D, Potts RO, Guy RH (1990) Examination of stratum corneum barrier function in vivo by infrared spectroscopy. J Invest Dermatol 95:403–408

    PubMed  CAS  Google Scholar 

  62. Babita K, Kumar V, Rana V et al (2006) Thermotropic and spectroscopic behavior of skin: relationship with percutaneous permeation enhancement. Curr Drug Deliv 3:95–113

    PubMed  CAS  Google Scholar 

  63. Mendelsohn R, Flach CR, Moore DJ (2006) Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta 1758:923–933

    PubMed  CAS  Google Scholar 

  64. Boncheva M, Damien F, Normand V (2008) Molecular organization of the lipid matrix in intact stratum corneum using ATR-FTIR spectroscopy. Biochim Biophys Acta 1778:1344–1355

    PubMed  CAS  Google Scholar 

  65. Kitson N, Thewalt J, Lafleur M et al (1994) A model membrane approach to the epidermal permeability barrier. Biochemistry 33:6707–6715

    PubMed  CAS  Google Scholar 

  66. Rehfeld SJ, Plachy WZ, Williams ML et al (1988) Calorimetric and electron spin resonance examination of lipid phase transitions in human stratum corneum: molecular basis for normal cohesion and abnormal desquamation in recessive X-linked ichthyosis. J Invest Dermatol 91:499–505

    PubMed  CAS  Google Scholar 

  67. Queiros MP, Sousa Neto D, Alonso A (2005) Dynamics and partitioning of spin-labelled stearates into the lipid domain of stratum corneum. J Control Release 106:374–385

    PubMed  Google Scholar 

  68. Norlén L, Placsencia I, Bagatolli LA (2008) Stratum corneum lipid organization as observed by atomic force microscopy, confocal and two-photon excitation fluorescence microscopy. Int J Cosmet Sci 30:391–411

    PubMed  Google Scholar 

  69. Norlén L, Plasencia Gil I, Simonsen A et al (2007) Human stratum corneum lipid organization as observed by atomic force microscopy of Langmuir-Blodgett films. J Struct Biol 158:386–400

    PubMed  Google Scholar 

  70. Lafleur M (1998) Phase behaviour of model stratum corneum lipid mixtures: an infrared spectroscopy investigation. Can J Chem 76:1501–1511

    CAS  Google Scholar 

  71. Moore DJ, Rerek ME, Mendelsohn R (1997) FTIR spectroscopy studies of the conformational order and phase behavior of ceramides. J Phys Chem B 101:8933–8940

    CAS  Google Scholar 

  72. Moore DJ, Rerek ME (2000) Insight into the molecular organization of lipids in the skin barrier from infrared spectroscopy studies of stratum corneum lipid models. Acta Derm Venereol Supp 208:16–22

    CAS  Google Scholar 

  73. Bouwstra JA, Gooris GS, Ponec M (2002) The lipid organization of the skin barrier: liquid and crystalline domains coexist in lamellar phases. J Biol Phys 28:211–223

    CAS  Google Scholar 

  74. Bouwstra JA, de Graaff A, Gooris GS et al (2003) Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol 120:750–758

    PubMed  CAS  Google Scholar 

  75. Pensack RD, Michniak BB, Moore DJ et al (2006) Infrared kinetic/structural studies of barrier reformation in intact stratum corneum following thermal perturbation. Appl Spectrosc 60:1399–1404

    PubMed  CAS  Google Scholar 

  76. Damien F, Boncheva M (2010) The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J Invest Dermatol 130:611–614

    PubMed  CAS  Google Scholar 

  77. Gennis RB (1989) Biomembranes: molecular structure and function. Springer-Verlag Inc., NY

    Google Scholar 

  78. Mukherjee S, Maxfield FR (2000) Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1:203–211

    PubMed  CAS  Google Scholar 

  79. Nicolaides N (1974) Skin lipids: their biochemical uniqueness. Science 186:19–26

    PubMed  CAS  Google Scholar 

  80. Yagi E, Sakamoto K, Nakagawa K (2006) Depth dependence of stratum corneum lipid ordering: a slow-tumbling simulation for electron paramagnetic resonance. J Invest Dermatol 127:895–899

    PubMed  Google Scholar 

  81. Madison KC (2003) Barrier function of the skin: “La raison d’être” of the epidermis. J Invest Dermatol 121:231–241

    PubMed  CAS  Google Scholar 

  82. Janssens M, Gooris GS, Bouwstra JA (2009) Infrared spectroscopy studies of mixtures prepared with synthetic ceramides varying in head group architecture: coexistence of liquid and crystalline phases. Biochim Biophys Acta 1788:732–742

    PubMed  CAS  Google Scholar 

  83. Garson J-C, Doucet J, Lévêque J-L et al (1991) Oriented structures in human stratum corneum revealed by X-ray diffraction. J Invest Dermatol 96:43–49

    PubMed  CAS  Google Scholar 

  84. Bouwstra JA, Gooris GS, Salomons-de Vries JA et al (1992) Structure of stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction study. Int J Pharm 84:205–216

    CAS  Google Scholar 

  85. Bouwstra JA, Gooris GS, Dubbelaar FER et al (2002) Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. J Invest Dermatol 118:606–617

    PubMed  CAS  Google Scholar 

  86. Sousa Neto D, Gooris GS, Bouwstra JA (2011) Effect of w-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem Phys Lipids 164:184–195

    PubMed  Google Scholar 

  87. Bouwstra JA, Gooris GS (2010) The lipid organization in human stratum corneum and model systems. Open Derm J 4:10–13

    CAS  Google Scholar 

  88. Caussin J, Gooris GS, Janssens M et al (2008) Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. Biochim Biophys Acta 1778:1472–1482

    PubMed  CAS  Google Scholar 

  89. Hill JR, Wertz PW (2003) Molecular models of the intercellular lamellae from epidermal stratum corneum. Biochim Biophys Acta 1616:121–126

    PubMed  CAS  Google Scholar 

  90. Forslind B (1994) A domain mosaic model of the skin barrier. Acta Derm Venereol 74:1–6

    PubMed  CAS  Google Scholar 

  91. Forslind B, Engstrom S, Engblom J et al (1997) A novel approach to the understanding of human skin barrier function. J Dermatol Sci 14:115–125

    PubMed  CAS  Google Scholar 

  92. Potts RO, Francoeur ML (1991) The influence of stratum corneum morphology on water permeability. J Invest Dermatol 96:495–499

    PubMed  CAS  Google Scholar 

  93. Kitson N, Thewalt JL (2000) Hypothesis: the epidermal permeability barrier is a porous medium. Acta Derm Venereol Supp 208:12–15

    CAS  Google Scholar 

  94. Bouwstra JA, Dubbelaar FER, Gooris GS et al (2000) The lipid organization in the skin barrier. Arch Dermatol Res Supp 208:23–30

    CAS  Google Scholar 

  95. McIntosh TJ (2003) Organization of skin stratum corneum extracellular lipid lamellae: diffraction evidence for asymmetric distribution of cholesterol. Biophys J 85:1675–1681

    PubMed  CAS  Google Scholar 

  96. Norlén L (2001) Skin barrier structure and function: the single gel phase model. J Invest Dermatol 117:830–836

    PubMed  Google Scholar 

  97. Kiselev MA (2007) Conformation of ceramide 6 molecules and chain-flip transitions in the lipid matrix of the outmost layer of mammalian skin, the stratum corneum. Crystallogr Rep 52:525–528

    CAS  Google Scholar 

  98. McIntosh TJ, Stewart ME, Downing DT (1996) X-ray diffraction analysis of isolated skin lipids: reconstitution of intercellular lipid domains. Bioc­hemistry 35:3649–3653

    PubMed  CAS  Google Scholar 

  99. Groen D, Gooris GS, Barlow DJ et al (2011) Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys J 100:1481–1489

    PubMed  CAS  Google Scholar 

  100. Kessner D, Kiselev MA, Dante S et al (2008) Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. Eur Biophys J 37:989–999

    PubMed  CAS  Google Scholar 

  101. Schroeter A, Kiselev MA, Hauss T et al (2009) Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labeling. Biochim Biophys Acta 1788:2194–2203

    PubMed  CAS  Google Scholar 

  102. Menon GK (2002) New insights into skin structure: scratching the surface. Adv Drug Deliv Rev 54(suppl 1):S3–S17

    PubMed  CAS  Google Scholar 

  103. Roelandt T, Giddelo C, Heughebaert C et al (2009) The “caveolae brake hypothesis” and the epidermal barrier. J Invest Dermatol 129:927–936

    PubMed  CAS  Google Scholar 

  104. Menon GK, Ghadially R, Williams ML et al (1992) Lamellar bodies as delivery systems of hydrolytic enzymes: implications for normal and abnormal desquamation. Br J Dermatol 126:337–345

    PubMed  CAS  Google Scholar 

  105. Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124:1099–1110

    PubMed  CAS  Google Scholar 

  106. Hachem J-P, Houben E, Crumrine D et al (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126:2074–2086

    PubMed  CAS  Google Scholar 

  107. Voegeli R, Rawlings AV, Doppler S et al (2007) Profiling of serine protease activities in human stratum corneum and detection of a stratum corneum tryptase-like enzyme. Int J Cosmet Sci 29:191–200

    PubMed  CAS  Google Scholar 

  108. Grubauer G, Elias PM, Feingold KR (1989) Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res 30:323–333

    PubMed  CAS  Google Scholar 

  109. Feingold KR, Schmuth M, Elias PM (2007) The regulation of permeability barrier homeostasis. J Invest Dermatol 127:1574–1576

    PubMed  CAS  Google Scholar 

  110. Landmann L (1986) Epidermal permeability barrier: transformation of lamellar granule-disks into intercellular sheets by a membrane-fusion process, a freeze-fracture study. J Invest Dermatol 87:202–209

    PubMed  CAS  Google Scholar 

  111. Haftek M, Teillon M-H, Schmitt D (1998) Stratum corneum, corneodesmosomes and ex vivo percutaneous penetration. Microsc Res Tech 43:242–249

    PubMed  CAS  Google Scholar 

  112. Loefgren H, Pascher I (1977) Molecular arrangement of sphingolipids: the monolayer approach. Chem Phys Lipids 20:273–284

    Google Scholar 

  113. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    PubMed  CAS  Google Scholar 

  114. Atkins PW (1997) Physical Chemistry. Oxford University Press, Oxford, UK

    Google Scholar 

  115. Bishop KJM, Wilmer CE, Soh S et al (2009) Nanoscale forces and their uses in self-assembly. Small 5:1600–1630

    PubMed  CAS  Google Scholar 

  116. Norlén L (2002) Does the single gel phase exist in stratum corneum? J Invest Dermatol 118:899–901

    Google Scholar 

  117. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    PubMed  CAS  Google Scholar 

  118. Grzybowski BA, Wilmer CE, Kim J et al (2006) Self-assembly: from crystals to cells. Soft Matter 5:1110–1128

    Google Scholar 

  119. Williams ML, Elias PM (1987) The extracellular matrix of stratum corneum: role of lipids in normal and pathological function. CRC Crit Rev Therap Drug Carrier Syst 3:95–122

    CAS  Google Scholar 

  120. Mitragotri S, Anissimov YG, Bunge AL et al (2011) Mathematical models of skin permeability: an overview. Int J Pharm 418:115–129

    Google Scholar 

  121. Bunge AL, Cleek RL (1995) A new method for estimating dermal absorption from chemical exposure. 2. Effect of molecular weight and octanol-water partitioning. Pharm Res 12:88–95

    PubMed  CAS  Google Scholar 

  122. Guy RH (2010) Predicting the rate and extent of fragrance chemical absorption into and through the skin. Chem Res Toxicol 23:864–870

    PubMed  CAS  Google Scholar 

  123. Mitragotri S (2003) Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release 86:69–92

    PubMed  CAS  Google Scholar 

  124. Levin J, Maibach HI (2005) The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control Release 103:291–299

    PubMed  CAS  Google Scholar 

  125. Golden GM, McKie JE, Potts RO (1987) Role of stratum corneum lipid fluidity in transdermal drug flux. J Pharm Sci 76:25–28

    PubMed  CAS  Google Scholar 

  126. Golden GM, Guzek DB, Kennedy AH et al (1987) Stratum corneum phase transitions and water barrier properties. Biochemistry 26:2382–2388

    PubMed  CAS  Google Scholar 

  127. Potts RO, Francoeur ML (1990) Lipid biophysics of water loss through the skin. Proc Natl Acad Sci USA 87:3871–3873

    PubMed  CAS  Google Scholar 

  128. Potts RO, Mak VHW, Guy RH et al (1991) Strategies to enhance permeability via stratum corneum lipid pathways. Adv Lipid Res 24:173–210

    PubMed  CAS  Google Scholar 

  129. Naik A, Guy RH (1997) Infrared spectroscopic and differential scanning calorimetric investigations of the Stratum corneum barrier function. In: Potts RO, Guy RH (eds) Mechanisms of transdermal drug delivery. Marcel Dekker, NY, pp 87–162

    Google Scholar 

  130. Naik A, Kalia YN, Pirot F et al (1999) Characterization of molecular transport across human Stratum corneum in vivo. In: Bronaugh RL, Maibach HI (eds) Percutaneous adsorption. Marcel Dekker, Inc., NY, pp 149–175

    Google Scholar 

  131. Imhof RE, Xiao P, De Jesus MEP et al (2009) New developments in skin barrier measurements. In: Rawlings AV, Leyden JJ (eds) Skin moisturization. Informa Healthcare USA, Inc., New York, pp 463–479

    Google Scholar 

  132. de Jaeger M, Groenink W, Bielsa i Guivernau R et al (2006) A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharm Res 23:951–960

    Google Scholar 

  133. Pilgram GSK, Vissers DCJ, van der Meulen H et al (2001) Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J Invest Dermatol 117:710–717

    PubMed  CAS  Google Scholar 

  134. Bouwstra JA, Gooris GS, Dubbelaar FER et al (1999) Cholesterol sulfate and calcium affect stratum corneum lipid organization over a wide temperature range. J Lipid Res 40:2303–2312

    PubMed  CAS  Google Scholar 

  135. Milstone LM (2004) Epidermal desquamation. J Dermatol Sci 36:131–140

    PubMed  Google Scholar 

  136. Harding CR, Watkinson AC, Rawlings AV et al (2000) Dry skin, moisturization and corneodesmolysis. Int J Cosm Sci 22:21–52

    CAS  Google Scholar 

  137. Fluhr JW, Elias PM (2002) Stratum corneum pH: formation and function of the ‘acid mantle’. Exogenous Dermatol 1:163–175

    CAS  Google Scholar 

  138. Fluhr JW, Kao JS, Jain M et al (2001) Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol 117:44–51

    PubMed  CAS  Google Scholar 

  139. Hachem J-P, Crumrine D, Fluhr J et al (2003) pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 121:345–353

    PubMed  CAS  Google Scholar 

  140. Rawlings AV, Harding CR, Watkinson AC et al (2002) Dry and xerotic skin conditions. In: Leyden JJ, Rawlings AV (eds) Skin moisturization. Marcel Dekker, Inc., New York, N.Y, pp 119–143

    Google Scholar 

  141. Hachem J-P, Man M-Q, Crumrine D et al (2005) Sustained serine protease activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 125:510–520

    PubMed  CAS  Google Scholar 

  142. Arseneault M, Lafleur M (2007) Cholesterol-sulfate and Ca2+ modulate the mixing properties of lipids in stratum corneum model mixtures. Biophys J 92:99–114

    PubMed  CAS  Google Scholar 

  143. Epstein EHJ, Williams ML, Elias PM (1981) Steroid sulfatase, X-linked ichthyosis and stratum corneum cell cohesion. Arch Dermatol 117:761–763

    PubMed  CAS  Google Scholar 

  144. Wu KS, van Osdol WW, Dauskardt RH (2006) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27:785–795

    PubMed  CAS  Google Scholar 

  145. Berthaud F, Boncheva M (2011) Correlation between the properties of the lipid matrix and the degrees of integrity and cohesion in healthy human stratum corneum. Exper Dermatol 20:255–262

    CAS  Google Scholar 

  146. Brandner JM, Haftek M, Niessen CM (2010) Adherens junctions, desmosomes and tight junctions in epidermal barrier function. Open Derm J 4:14–20

    CAS  Google Scholar 

  147. Elias PM (2008) Skin barrier function. Curr Alergy Asthma Rep 8:299–305

    CAS  Google Scholar 

  148. Elias PM (2010) Therapeutic implications of a barrier-based pathogenesis of atopic dermatitis. Ann Dermatol 22:245–254

    PubMed  CAS  Google Scholar 

  149. Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nature Rev Drug Disc 3:115–124

    CAS  Google Scholar 

  150. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nature Biotech 26:1261–1268

    CAS  Google Scholar 

  151. Loden M, Anderson A-C (1996) Effect of topically applied lipids on surfactant-irritated skin. Br J Dermatol 134:215–220

    PubMed  CAS  Google Scholar 

  152. Darmstadt GL, Mao-Qiang M, Chi E et al (2002) Impact of topical oils on the skin barrier: possible implications for neonathal health in developing countries. Acta Paediatr 91:546–554

    PubMed  CAS  Google Scholar 

  153. Menon GK, Duggan M (2006) Strategies for improving the skin barrier by cosmetic skin care treatments. In: Wille JJ (ed) Skin delivery systems: Transdermals, dermatologicals, and cosmetic actives. Blackwell Publishing, Ames, pp 25–42

    Google Scholar 

  154. Jelenco C 3rd, McKinley JC (1976) Studies in burns: XV. Use of a topical lipid in treating human burns. Am Surg 42:838–848

    Google Scholar 

  155. Lavrijsen AP, Bouwstra JA, Gooris GS et al (1995) Reduced skin barrier function parallels abnormal stratum corneum lipid organization in patients with lamellar ichthyosis. J Invest Dermatol 105:619–624

    PubMed  CAS  Google Scholar 

  156. Rawlings AV, Harding CR (2004) Moisturization and skin barrier function. Dermatol Ther 17(suppl 1):43–48

    PubMed  Google Scholar 

  157. Wiechers JW, Dederen JC, Rawlings AV (2009) Moisturization mechanisms: Internal occlusion by orthorhombic lipid phase stabilizers–a novel mechanism of action of skin moisturization. In: Rawlings AV, Leyden JJ (eds) skin moisturization. Informa Healthcare USA, Inc., New York, pp 309–321

    Google Scholar 

  158. Caussin J, Gooris GS, Groenink W et al (2007) Interaction of lipophilic moisturizers on stratum corneum domains in vitro and in vivo. Skin Pharmacol Physiol 20:175–186

    PubMed  CAS  Google Scholar 

  159. Caussin J, Rozema E, Gooris GS et al (2009) Hydrophilic and lipophilic moisturizers have similar penetration profiles but different effects on SC water distribution in vivo. Exper Dermatol 18:954–961

    CAS  Google Scholar 

  160. Caussin J, Gooris GS, Bouwstra JA (2008) FTIR studies show lipophilic moisturizers to interact with stratum corneum lipids, rendering them more densely packed. Biochim Biophys Acta 1778:1517–1524

    PubMed  CAS  Google Scholar 

  161. Hadgraft J, Finnin BC (2006) Fundamentals of retarding penetration. In: Smith EW, Maibach HI (eds) Percutaneous penetration enhancers. Taylor and Francis, Boca Raton, pp 361–371

    Google Scholar 

  162. Hadgraft J, Peck J, Williams DG et al (1996) Mechanisms of reaction of skin penetration enhancers/retardants: azone and analogues. Int J Pharm 141:17–25

    CAS  Google Scholar 

  163. Peck JV, Minaskanian G, Hadgraft J (2000) Topical compositions useful as skin penetration retardants. US patent 6,086,905

    Google Scholar 

  164. Kaushik D, Batheja P, Kilfoyle B et al (2008) Percutaneous penetration modifiers: enhancement versus retardation. Expert Opin Drug Deliv 5:517–529

    PubMed  CAS  Google Scholar 

  165. Kim N, El-Khalili M, Henary MM et al (1999) Percutaneous penetration enhancement activity of aromatic S, S-dimethyliminosulfuranes. Int J Pharm 187:219–229

    PubMed  CAS  Google Scholar 

  166. Brain KR, Watkinson AC, Walters KA (1999) Reduction of the skin penetration of xenobiotics using chemical penetration retarders. In: Sohns T, Voicu VA (eds) NBC risks: Current capabilities and future perspectives for protection, NATO Science Series: Disarmament Technologies. Kluwer Academic Publishers, Dordrecht, pp 271–277

    Google Scholar 

  167. Li N, Su Q, Tan F et al (2010) Effect of 1,4-cyclohexanediol on percutaneous absorption and penetration of azelaic acid. Int J Pharm 387:167–171

    PubMed  CAS  Google Scholar 

  168. Braue EH Jr, Doxzon BF, Lumpkin HL et al (2006) Military perspectives in chemical penetration retardation. In: Smith EW, Maibach HI (eds) Percutaneous penetration enhancers. Taylor and Francis, Boca Raton, pp 385–398

    Google Scholar 

  169. Smith EW, Maibach HI (eds) (2006) Percutaneous penetration enhancers. Taylor and Francis, Boca Raton

    Google Scholar 

  170. Mitragotri S (2000) Synergistic effects of enhancers for transdermal drug delivery. Pharm Res 17:1354–1359

    PubMed  CAS  Google Scholar 

  171. Karande P, Jain A, Ergun K et al (2005) Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci USA 102:4688–4693

    PubMed  CAS  Google Scholar 

  172. Whitesides GM (1995) Self-assembling materials. Sci Am 273:146–149

    Google Scholar 

  173. Lehn J-M (2004) Supramolecular chemistry: from molecular information towards self-organization and complex matter. Rep Prog Phys 67:249–265

    Google Scholar 

  174. Lampe MA, Burlingame AL, Whitney J et al (1983) Human stratum corneum lipids: characterization and regional variations. J Lipid Res 24:120–130

    PubMed  CAS  Google Scholar 

  175. Gunathilake R, Schurer N, Shoo BA et al (2009) pH-regulated mechanisms account for pigment-type differences in epidermal barrier function. J Invest Dermatol 129:1719–1729

    PubMed  CAS  Google Scholar 

  176. Meidan VM, Roper CS (2008) Inter- and intra-individual variability in human skin barrier function: a large scale retrospective study. Toxicol In Vitro 22:1062–1069

    PubMed  CAS  Google Scholar 

  177. Moore DJ, Snyder RG, Rerek ME et al (2006) Kinetics of membrane raft formation: fatty acid domains in stratum corneum lipid models. J Phys Chem B 110:2378–2386

    PubMed  CAS  Google Scholar 

  178. Boelsma E, Hendriks HFJ, Roza L (2001) Nutritional skin care: health effects of micronutrients and fatty acids. Am J Clin Nutr 73:853–864

    PubMed  CAS  Google Scholar 

  179. McDaniel JC, Beluri M, Ahijevych K et al (2008) Omega-3 fatty acids effect on wound healing. Wound Rep Reg 16:337–345

    Google Scholar 

  180. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    PubMed  CAS  Google Scholar 

  181. Lingwood D, SImons K (2010) Lipid rafts as membrane-organizing principle. Science 327:46–50

    PubMed  CAS  Google Scholar 

  182. Dietrich C, Bagatolli LA, Volovyk ZN et al (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    PubMed  CAS  Google Scholar 

  183. London M, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): Implications for lipid raft structure and function. J Biol Chem 279:9997–10004

    PubMed  CAS  Google Scholar 

  184. Boncheva M, Whitesides GM (2005) Making things by self-assembly. MRS Bull 30:736–742

    CAS  Google Scholar 

  185. Alivisatos AP, Barbara PF, Castelman AW et al (1998) From molecules to materials: current trends and future directions. Adv Mater 10:1297–1336

    Google Scholar 

  186. Boncheva M, Whitesides GM (2004) The biomimetic approach to the design of functional self-assembling systems. In: Schwarz JA, Contescu CI, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology, vol 1. CRC Press, Boca Raton, pp 287–294

    Google Scholar 

  187. Schaefer-Korting M, Mehnert W, Korting H-C (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59:427–443

    CAS  Google Scholar 

  188. Mueller RH, Petersen RD, Hommoss A et al (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530

    CAS  Google Scholar 

  189. Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500:28–60

    CAS  Google Scholar 

  190. Martin P (1997) Wound healing – aiming for perfect skin regeneration. Science 276:75–81

    PubMed  CAS  Google Scholar 

  191. Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:R15–R28

    CAS  Google Scholar 

  192. Noireaux V, Maeda YT, Libchaber A (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 108:3473–3480

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mila Boncheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boncheva, M. (2012). Molecular Organization of the Lipid Matrix in Stratum Corneum and Its Relevance for the Protective Functions of Human Skin. In: Lodén, M., Maibach, H. (eds) Treatment of Dry Skin Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27606-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27606-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27605-7

  • Online ISBN: 978-3-642-27606-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics