Skip to main content

Lewis or Brønsted Acid-Mediated Transformations of VDCPs

  • Chapter
  • First Online:
Book cover Chemical Transformations of Vinylidenecyclopropanes

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 327 Accesses

Abstract

Lewis or Brønsted acid-mediated intramolecular rearrangement of VDCPs, and the reactions of VDCPs with acetals, aldehydes, ketones, imines, activated alkenes, nitriles, acyl chlorides, and alcohols are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi M, Shao LX, Lu JM, Wei Y, Mizuno K, Maeda H (2010) Chemistry of vinylidenecyclopropanes. Chem Rev 110:5883–5913

    Article  CAS  Google Scholar 

  2. Pasto DJ, Miles MF (1976) Electrophilic addition reactions of alkenylidenecyclopropanes. Formation of highly substituted, nonplanar butadienes. J Org Chem 41:425–432

    Article  CAS  Google Scholar 

  3. Pasto DJ, Gontarz JA (1969) The mechanism of the reduction of organomercurials with sodium borohydride. J Am Chem Soc 91:719–721

    Article  CAS  Google Scholar 

  4. Gray GA, Jackson WR (1969) Sodium borohydride reduction of oxymercury compounds. J Am Chem Soc 91:6205–6207

    Article  CAS  Google Scholar 

  5. Whitesides GM, Filippo JS Jr (1970) The mechanism of reduction of alkylmercuric halides by metal hydrides. J Am Chem Soc 92:6611–6624

    Article  CAS  Google Scholar 

  6. DePuy CR, Van Lanen RJ (1974) Reactions of cyclopropanols with halogenating agents and other electrophiles. J Org Chem 39:3360–3365

    Article  CAS  Google Scholar 

  7. Pasto DJ, Smorada RL, Turini BL, Wampfler DJ (1976) Electrophilic and radical addition reactions of a bisalkylidenecyclopropane. J Org Chem 41:432–438

    Article  CAS  Google Scholar 

  8. Xu GC, Ma M, Liu LP, Shi M (2005) A novel rearrangement of arylvinylidenecyclopropanes to naphthalene derivatives catalyzed by Lewis acids or Brønsted acids. Synlett 1869–1872

    Google Scholar 

  9. Xu GC, Liu LP, Lu JM, Shi M (2005) Lewis acid-catalyzed rearrangement of multi-substituted arylvinylidenecyclopropanes. J Am Chem Soc 127:14552–14553

    Article  CAS  Google Scholar 

  10. Zhang YP, Lu JM, Xu GC, Shi M (2007) Lewis-acid-catalyzed rearrangement of arylvinylidenecyclopropanes: significant influence of substituents and electronic nature of aryl groups. J Org Chem 72:509–516

    Article  CAS  Google Scholar 

  11. Lu JM, Shi M (2007) Montmorillonite K-10-catalyzed intramolecular rearrangement of vinylidenecyclopropanes. Tetrahedron 63:7545–7549

    Article  CAS  Google Scholar 

  12. Siehl HU, Aue DH (1997) In: Rappoport Z, Stang PJ (eds) Dicoordinated carbocations. Wiley, New York, pp 137–138

    Google Scholar 

  13. The stabilizing effect of cyclopropyl substituents on carbocations was well documented, see: Olah GA, Reddy VP, Surya Prakash GK (1992) Long-lived cyclopropylcarbinyl cations. Chem Rev 92:69–95

    Google Scholar 

  14. Bollinger JM, Brinich JM, Olah GA (1970) Stable carbonium ions. XCVI. Propadienylhalonium ions and 2-haloallyl cations. J Am Chem Soc 92:4025–4033

    Article  CAS  Google Scholar 

  15. Carey FA, Sundberg RJ (1998) Advanced organic chemistry, 5th edn. Plenum Press, New York, pp 221, 419

    Google Scholar 

  16. Carey FA, Tremper HS (1969) Carbonium ion-silane hydride transfer reactions. III. Cyclopropylmethyl cations. J Am Chem Soc 91:2967–2972

    Article  CAS  Google Scholar 

  17. Fleming I (2001) Improving the Friedel–Crafts reaction. Chemtracts: Org Chem 14:405–406

    Google Scholar 

  18. For the mechanism of the 1,3-proton shift, see: Carey FA, Sundburg RJ (1990) Advanced organic chemistry. 3rd edn. Plenum Press, New York, pp 609–613

    Google Scholar 

  19. Shi M, Wu L, Lu JM (2008) Gold(I)-catalyzed intramolecular rearrangement of vinylidenecyclopropanes. J Org Chem 73:8344–8347

    Article  CAS  Google Scholar 

  20. Li W, Shi M, Li YX (2009) Brønsted acid mediated novel rearrangement of diarylvinylidenecyclopropanes and mechanistic investigations based on DFT calculations. Chem Eur J 15:8852–8860

    Article  CAS  Google Scholar 

  21. Huang X, Su CL, Liu QY, Song YT (2008) A facile access to medium- and large-size naphthalenacarbocycles via Lewis acid mediated ring-expansion reaction of bicyclic vinylidenecyclopropanes. Synlett 229–232

    Google Scholar 

  22. Lu JM, Shi M (2006) Lewis acid catalyzed reaction of arylvinylidenecyclopropanes with acetals: a facile synthetic protocol for the preparation of indene derivatives. Org Lett 8:5317–5320

    Article  CAS  Google Scholar 

  23. Su CL, Liu QY, Ni Y, Huang X (2009) An efficient synthesis of polysubstituted tetrahydrofuran and indene derivatives via the Lewis acid-mediated cycloaddition of VCPs with aldehydes. Tetrahedron Lett 50:4381–4383

    Article  CAS  Google Scholar 

  24. Su CL, Huang X (2009) Lewis acid-mediated selective cycloadditions of vinylidenecyclopropanes with aromatic aldehydes: an efficient protocol for the synthesis of benzo[c]fluorene, furan and furo[2,3-b]furan derivatives. Adv Synth Catal 351:135–140

    Article  CAS  Google Scholar 

  25. Su CL, Huang X, Liu QY, Huang X (2009) Facile synthesis of tetrahydrofurans from cycloadditions of vinylidenecyclopropanes with aldehydes and further transformations for the construction of furan, indene, and benzo[c]fluorene derivatives. J Org Chem 74:8272–8279

    Article  CAS  Google Scholar 

  26. Lu JM, Shi M (2008) Lewis acid catalyzed reactions of vinylidenecyclopropanes with activated carbon-oxygen double bond: a facile synthetic protocol for functionalized tetrahydrofuran and 3,6-dihydropyran derivatives. J Org Chem 73:2206–2210

    Article  CAS  Google Scholar 

  27. Lu JM, Shi M (2007) Lewis acid catalyzed reaction of arylvinylidenecyclopropanes with ethyl (arylimino)acetates: a facile synthetic protocol for pyrrolidine and 1,2,3,4-tetrahydroquinoline derivatives. Org Lett 9:1805–1808

    Article  CAS  Google Scholar 

  28. When N-aryl substituted imines were used as the substrates, similar transformations can be obtained in very low yields, see: Stepakov AV, Larina AG, Molchanov AP, Stepakova LV, Starova GL, Kostikov RR (2007) Reaction of vinylidenecyclopropanes with aromatic imines in the presence of Lewis acids. Russ J Org Chem 43:40–49

    Google Scholar 

  29. Prato and Scorrano’s group reported BF3 .OEt2-catalyzed cycloaddition reaction of aryliminoacetates with electron-rich olefins to give tetrahydroquinoline derivatives, see: Borrione E, Prato M, Scorrano G, Stivanello M, Lucchini V (1988) Synthesis and cycloaddition reactions of ethyl glyoxylate imines. Synthesis of substituted furo-[3,2-c]quinolines and 7H-indeno[2,1-c]quinolines. J Heterocycl Chem 25:1831–1835

    Google Scholar 

  30. Regás D, Afonso MM, Rodríguez ML, Antonio Palenzuela J (2003) Synthesis of octahydroquinolines through the Lewis acid catalyzed reaction of vinyl allenes and imines. J Org Chem 68:7845–7852

    Article  Google Scholar 

  31. Hayashi Y, Shibata T, Narasaka K (1990) Ene reaction of allenyl sulfides with aldehydes and Schiffs bases catalyzed by Lewis acids. Chem Lett 1693–1696

    Google Scholar 

  32. Xu B, Shi M (2003) Lewis acid-catalyzed reaction of allenes with activated ketone. Synlett 1639–1642

    Google Scholar 

  33. Chevrier B, Weiss R (1974) Structures of the intermediate complexes in Friedel–Crafts acylations. Angew Chem Int Ed Engl 13:1–10

    Article  Google Scholar 

  34. Kobayashi has concluded that this type of aza-Diels–Alder reaction proceeded via a stepwise mechanism, see: Kobayashi S, Ishitani H, Nagayama S (1995) Lanthanide triflate catalyzed imino Diels–Alder reactions; convenient syntheses of pyridine and quinoline derivatives. Synthesis 1195–1202

    Google Scholar 

  35. Shi M, Shao LX, Xu B (2003) The Lewis acids catalyzed aza-Diels–Alder reaction of methylenecyclopropanes with imines. Org Lett 5:579–582

    Article  CAS  Google Scholar 

  36. Shao LX, Shi M (2003) Montmorillonite KSF-catalyzed one-pot, three-component, aza-Diels–Alder reactions of methylenecyclopropanes with arenecarbaldehydes and arylamines. Adv Synth Catal 345:963–966

    Article  CAS  Google Scholar 

  37. Zhu ZB, Shao LX, Shi M (2009) Brønsted acid or solid acid catalyzed aza-Diels–Alder reactions of methylenecyclopropanes with ethyl (arylimino)acetates. Eur J Org Chem 2576–2580

    Google Scholar 

  38. Lu JM, Zhu ZB, Shi M (2009) Lewis acid or Brønsted acid catalyzed reactions of vinylidene cyclopropanes with activated carbon-nitrogen, nitrogen–nitrogen, and iodine-nitrogen double-bond-containing compounds. Chem Eur J 15:963–971

    Article  CAS  Google Scholar 

  39. Li Z, Conser KR, Jacobsen EN (1993) Asymmetric alkene aziridination with readily available chiral diimine-based catalysts. J Am Chem Soc 115:5326–5327

    Article  CAS  Google Scholar 

  40. Li W, Shi M (2009) A catalytic method for the preparation of polysubstituted cyclopentanes: [3 + 2] cycloaddition of vinylidenecyclopropanes with activated olefins catalyzed by triflic imide. J Org Chem 74:856–860

    Article  CAS  Google Scholar 

  41. Li W, Shi M (2009) Triflic imide-catalyzed cascade cycloaddition and Friedel–Crafts reaction of diarylvinylidenecyclopropanes with ethyl 5,5-diarylpenta-2,3,4-trienoate. Org Biomol Chem 7:1775–1777

    Article  CAS  Google Scholar 

  42. Li W, Shi M (2008) Brønsted acid TfOH-mediated [3 + 2] cycloaddition reactions of diarylvinylidenecyclopropanes with nitriles. J Org Chem 73:4151–4154

    Article  CAS  Google Scholar 

  43. For related results of methylenecyclopropanes from Shi’s group, see: Huang JW, Shi M (2004) Brønsted acid TfOH-mediated reactions of methylenecyclopropanes with nitriles. Synlett 2343–2346 and references therein

    Google Scholar 

  44. Shi M, Tian GQ (2006) Brønsted acid TfOH-mediated reactions of 2-(arylmethylene)cyclopropylcarbinols with acetonitrile. Tetrahedron Lett 47:8059–8062

    Article  CAS  Google Scholar 

  45. Booth BL, Noori GFM (1980) The chemistry of nitrilium salts. Part l. Acylation of phenols and phenol ethers with nitriles and trifluoromethanesulphonic acid. J Chem Soc Perkin Trans 1:2894–2900

    Article  Google Scholar 

  46. Amer MI, Booth BL, Noori GFM, Proença MFJRP (1983) The chemistry of nitrilium salts. Part 3. The importance of triazinium salts in Houben-Hoesch reactions catalyzed by trifluoromethanesulphonic acid. J Chem Soc Perkin Trans 1:1075–1082

    Article  Google Scholar 

  47. Shi M, Wu L, Lu JM (2008) AlCl3-mediated tandem Friedel–Crafts reactions of vinylidenecyclopropanes with acyl chlorides: a facile synthetic method for the construction of 1-[2-(2,2-diarylvinyl)-1-phenyl-3H-inden-5-yl]ethanone derivatives. Tetrahedron 64:3315–3321

    Article  CAS  Google Scholar 

  48. For pioneering work on the reactions of methylenecyclopropanes with acyl chloride in the presence of AlCl3, see: Huang X, Yang YW (2007) Acylation of alkylidenecyclpropanes for the facile synthesis of α,β-unsaturated ketone and benzofulvene derivatives with high stereoselectivity. Org Lett 9:1667–1670

    Google Scholar 

  49. Shi M, Yao LF (2008) Lewis acid catalyzed reactions of diarylvinylidenecyclopropanes and 1,1,3-triarylprop-2-yn-1-ols or their methyl ethers. Chem Eur J 14:8725–8731

    Article  CAS  Google Scholar 

  50. Swaminathan S, Narayanan KV (1971) The Rupe and Meyer-Schuster rearrangements. Chem Rev 71:429–438

    Article  CAS  Google Scholar 

  51. Edens M, Boerner D, Chase CR, Nass D, Schiavelli MD (1977) Mechanism of the Meyer-Schuster rearrangement. J Org Chem 42:3403–3408

    Article  CAS  Google Scholar 

  52. Yao LF, Shi M (2009) Nd(OTf)3-catalyzed cascade reactions of vinylidenecyclopropanes with enynol: a new method for the construction of the 5-7-6 tricyclic framework and its scope and limitations. Eur J Org Chem 4036–4040

    Google Scholar 

  53. Yao LF, Shi M (2009) Lewis acid catalyzed cascade reactions of 1,6-diynes and 1,6-enynes with vinylidenecyclopropanes. Chem Eur J 15:3875–3881

    Article  CAS  Google Scholar 

  54. Michelet V, Toullec PY, Genêt JP (2008) Cycloisomerization of 1, n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights. Angew Chem Int Ed 47:4268–4315

    Article  CAS  Google Scholar 

  55. Bruneau C (2005) Electrophilic activation and cycloisomerization of enynes: a new route to functional cyclopropanes. Angew Chem Int Ed 44:2328–2334

    Article  CAS  Google Scholar 

  56. Yuan W, Shi M (2010) Reactions of vinylidenecyclopropanes with xanthydrol and xanthenes. Tetrahedron 66:7104–7111

    Article  CAS  Google Scholar 

  57. For pioneering work with bis(4-alkoxyphenyl)methanols as the electrophiles, please see: Wu L, Shi M, Li YX (2010) BF3 .OEt2-catalyzed intermolecular reactions of vinylidenecyclopropanes with bis(p-alkoxyphenyl)methanols: a novel cationic 1,4-aryl-migration process. Chem Eur J 16:5163–5172

    Google Scholar 

  58. Li W, Yuan W, Pindi S, Shi M, Li GG (2010) Au/Ag-catalyzed intramolecular ring-opening of vinylidene-cyclopropanes (VDCPs): an easy access to functional tetrahydropyrans. Org Lett 12:920–923

    Article  CAS  Google Scholar 

  59. Hyland CJT, Hegedus LS (2006) Gold-catalyzed and N-iodosuccinimide-mediated cyclization of γ-substituted allenamides. J Org Chem 71:8658–8660

    Article  CAS  Google Scholar 

  60. Morita N, Krause N (2006) The first gold-catalyzed C-S bond formation: cycloisomerization of α-thioallenes to 2,5-dihydrothiophenes. Angew Chem Int Ed 45:1897–1899

    Article  CAS  Google Scholar 

  61. Sromek AW, Rubina M, Gevorgyan V (2005) 1,2-Halogen migration in haloallenyl ketones: regiodivergent synthesis of halofurans. J Am Chem Soc 127:10500–10501

    Article  CAS  Google Scholar 

  62. Nishina N, Yamamoto Y (2006) Gold-catalyzed intermolecular hydroamination of allenes with arylamines and resulting high chirality transfer. Angew Chem Int Ed 45:3314–3317

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixiong Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Shao, L., Lu, J., Shi, M. (2012). Lewis or Brønsted Acid-Mediated Transformations of VDCPs. In: Chemical Transformations of Vinylidenecyclopropanes. SpringerBriefs in Molecular Science(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27573-9_2

Download citation

Publish with us

Policies and ethics