Skip to main content

Bin-Packing

  • Chapter
  • First Online:

Part of the book series: Algorithms and Combinatorics ((AC,volume 21))

Abstract

Suppose we have n objects, each of a given size, and some bins of equal capacity. We want to assign the objects to the bins, using as few bins as possible. Of course the total size of the objects assigned to one bin should not exceed its capacity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Coffman, E.G., Garey, M.R., and Johnson, D.S. [1996]: Approximation algorithms for bin-packing; a survey. In: Approximation Algorithms for NP-Hard Problems (D.S. Hochbaum, ed.), PWS, Boston, 1996

    Google Scholar 

  • Baker, B.S. [1985]: A new proof for the First-Fit Decreasing bin-packing algorithm. Journal of Algorithms 6 (1985), 49–70

    Article  MATH  MathSciNet  Google Scholar 

  • Bansal, N., Correa, J.R., Kenyon, C., and Sviridenko, M. [2006]: Bin packing in multiple dimensions: inapproximability results and approximation schemes. Mathematics of Operations Research 31 (2006), 31–49

    Article  MATH  MathSciNet  Google Scholar 

  • Caprara, A. [2008]: Packing d-dimensional bins in d stages. Mathematics of Operations Research 33 (2008), 203–215

    Article  MATH  MathSciNet  Google Scholar 

  • Dósa, G. [2007]: The tight bound of first fit decreasing bin-packing algorithm is FFD(I) ≤ 11 ∕ 9OPT(I) + 6 ∕ 9. In: Combinatorics, Algorithms, Probabilistic and Experimental Methodologies; LNCS 4614 (Chen, B., Paterson, M., Zhang, G., eds.), Springer, Berlin 2007, pp. 1–11

    Google Scholar 

  • Eisemann, K. [1957]: The trim problem. Management Science 3 (1957), 279–284

    Article  MATH  MathSciNet  Google Scholar 

  • Fernandez de la Vega, W., and Lueker, G.S. [1981]: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1 (1981), 349–355

    Article  MATH  MathSciNet  Google Scholar 

  • Garey, M.R., Graham, R.L., Johnson, D.S., and Yao, A.C. [1976]: Resource constrained scheduling as generalized bin packing. Journal of Combinatorial Theory A 21 (1976), 257–298

    Article  MATH  MathSciNet  Google Scholar 

  • Garey, M.R., and Johnson, D.S. [1975]: Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing 4 (1975), 397–411

    Article  MATH  MathSciNet  Google Scholar 

  • Garey, M.R., and Johnson, D.S. [1979]: Computers and Intractability; A Guide to the Theory of NP-Completeness. Freeman, San Francisco 1979, p. 127

    Google Scholar 

  • Gilmore, P.C., and Gomory, R.E. [1961]: A linear programming approach to the cutting-stock problem. Operations Research 9 (1961), 849–859

    Article  MATH  MathSciNet  Google Scholar 

  • Graham, R.L. [1966]: Bounds for certain multiprocessing anomalies. Bell Systems Technical Journal 45 (1966), 1563–1581

    Google Scholar 

  • Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G. [1979]: Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Discrete Optimization II; Annals of Discrete Mathematics 5 (P.L. Hammer, E.L. Johnson, B.H. Korte, eds.), North-Holland, Amsterdam 1979, pp. 287–326

    Google Scholar 

  • Hochbaum, D.S., and Shmoys, D.B. [1987]: Using dual approximation algorithms for scheduling problems: theoretical and practical results. Journal of the ACM 34 (1987), 144–162

    Article  MathSciNet  Google Scholar 

  • Horowitz, E., and Sahni, S.K. [1976]: Exact and approximate algorithms for scheduling nonidentical processors. Journal of the ACM 23 (1976), 317–327

    Article  MATH  MathSciNet  Google Scholar 

  • Jansen, K., Prädel, L., and Schwarz, U.M. [2009]: Two for one: tight approximation of 2D bin packing. In: Algorithms and Data Structures – Proceedings of the 11th Algorithms and Data Structures Symposium; LNCS 5664 (F. Dehne, M. Gavrilova, J.-R. Sack, C.D. Tóth, eds.), Springer, Berlin 2009, pp. 399–410

    Google Scholar 

  • Johnson, D.S. [1973]: Near-Optimal Bin Packing Algorithms. Doctoral Thesis, Dept. of Mathematics, MIT, Cambridge, MA, 1973

    Google Scholar 

  • Johnson, D.S. [1974]: Fast algorithms for bin-packing. Journal of Computer and System Sciences 8 (1974), 272–314

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, D.S. [1982]: The NP-completeness column; an ongoing guide. Journal of Algorithms 3 (1982), 288–300, Section 3

    Google Scholar 

  • Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., and Graham, R.L. [1974]: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3 (1974), 299–325

    Article  MathSciNet  Google Scholar 

  • Karmarkar, N., and Karp, R.M. [1982]: An efficient approximation scheme for the one-dimensional bin-packing problem. Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (1982), 312–320

    Google Scholar 

  • Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. [1993]: Sequencing and scheduling: algorithms and complexity. In: Handbooks in Operations Research and Management Science; Vol. 4 (S.C. Graves, A.H.G. Rinnooy Kan, P.H. Zipkin, eds.), Elsevier, Amsterdam 1993

    Google Scholar 

  • Lenstra, H.W. [1983]: Integer Programming with a fixed number of variables. Mathematics of Operations Research 8 (1983), 538–548

    Article  MATH  MathSciNet  Google Scholar 

  • Papadimitriou, C.H. [1994]: Computational Complexity. Addison-Wesley, Reading 1994, pp. 204–205

    Google Scholar 

  • Plotkin, S.A., Shmoys, D.B., and Tardos, É. [1995]: Fast approximation algorithms for fractional packing and covering problems. Mathematics of Operations Research 20 (1995), 257–301

    Article  MATH  MathSciNet  Google Scholar 

  • Queyranne, M. [1986]: Performance ratio of polynomial heuristics for triangle inequality quadratic assignment problems. Operations Research Letters 4 (1986), 231–234

    Article  MATH  MathSciNet  Google Scholar 

  • Seiden, S.S. [2002]: On the online bin packing problem. Journal of the ACM 49 (2002), 640–671

    Article  MathSciNet  Google Scholar 

  • Simchi-Levi, D. [1994]: New worst-case results for the bin-packing problem. Naval Research Logistics 41 (1994), 579–585

    Article  MATH  MathSciNet  Google Scholar 

  • van Vliet, A. [1992]: An improved lower bound for on-line bin packing algorithms. Information Processing Letters 43 (1992), 277–284

    Article  MATH  MathSciNet  Google Scholar 

  • Xia, B., and Tan, Z. [2010]: Tighter bounds of the First Fit algorithm for the bin-packing problem. Discrete Applied Mathematics 158 (2010), 1668–1675

    Article  MATH  MathSciNet  Google Scholar 

  • Yue, M. [1991]: A simple proof of the inequality FFD(L) ≤ \frac{11} {9} OPT (L) + 1,  ∀L, for the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7 (1991), 321–331

    Article  MATH  Google Scholar 

  • Zhang, G. [2005]: A 3-approximation algorithm for two-dimensional bin packing. Operations Research Letters 33 (2005), 121–126

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Korte .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korte, B., Vygen, J. (2012). Bin-Packing. In: Combinatorial Optimization. Algorithms and Combinatorics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24488-9_18

Download citation

Publish with us

Policies and ethics