Skip to main content

Microbial Degradation of 2,4,6-Trinitrotoluene: Application to Explosives Sensor

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

2,4,6-Trinitrotoluene (TNT) is a highly energetic compound with the formula C6H2(NO2)3CH3 and best known as a useful explosive material with convenient handling properties which led to a relatively safe storage due to the low sensitivity to impact shock and heat stimulation compared to other explosives and no metallic corrosion (Boileau et al. 1987). Then, TNT has been used as an explosive for military and industrial purposes and the TNT production reached to its peak during the two World Wars (Harter 1985). It is estimated that TNT is produced close to 1,000,000 kg per year (Harter 1985). Therefore, a high concentration of TNT has been still found in soil and groundwater at former manufacturing sites (Fernando et al. 1990; Hawari et al. 2000; Lewis et al. 2004; Maeda et al. 2006a). Presently soil and groundwater contamination by the explosive is a serious problem in the countries, mainly United States, Germany and Canada (Pennington 1999; Fritsche et al. 2000). Sediments and soils beneath some industrial sites contain large amounts of nitro aromatics with up to 10 g of TNT per kg of soil being reported for some sites (Carpenter et al. 1978; Kaplan and Kaplan 1982; Fernando et al. 1990). The biodegradation studies have indicated that an explosive is highly recalcitrant for microbial biodegradation (Rieger and Knackmuss 1995a, b). Among them, in particular, TNT is more recalcitrant than other nitroaromatic compounds (e.g. mono- and dinitrotoluenes), because three nitro groups are located symmetrically on the aromatic ring which restrict the attack by classic dioxygenase enzymes involved in the microbial metabolism of aromatic compounds. Hence, TNT has strong cytotoxicity and mutagenicity in various living organisms (Won et al. 1976; Ahlborg et al. 1988; Tan et al. 1992; Berthe-Corti et al. 1998; Letzel et al. 2003; Padda et al. 2003; Saka 2004; Sun et al. 2005) and is listed as class C potential human carcinogen by the US Environmental Protection Agency. In addition, in TNT-exposed humans, notable toxic manifestations have included aplastic anaemia, toxic hepatitis, cataracts, hepatomegaly, and liver cancer (Sabbioni et al. 2007); therefore, it is significant to develop the bioremediation technology for TNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborg G Jr, Einisto P, Sorsa M (1988) Mutagenic activity and metabolites in the urine of workers exposed to trinitrotoluene (TNT). Br J Ind Med 45:353–358

    CAS  Google Scholar 

  • Ahmad F, Hughes JB (2002) Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids. Environ Sci Technol 36:4370–4381

    CAS  Google Scholar 

  • Altamirano M, Garcia-Villada L, Agrelo M, Sanchez-Martin L, Martin-Otero L, Flores-Moya A (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosens Bioelectron 19:1319–1323

    CAS  Google Scholar 

  • Asakawa H, Maeda T, Ogawa HI, Haruyama T (2006) A cellular bioassay for TNT detection using engineered Pseudomonas sp. strain TM101 for systematic bioremediation. J Biol Phys Chem 6

    Google Scholar 

  • Banerjee HN, Verma M, Hou LH, Ashraf M, Dutta SK (1999) Cytotoxicity of TNT and its metabolites. Yale J Biol Med 72:1–4

    CAS  Google Scholar 

  • Banerjee H, Hawkins Z, Dutta S, Smoot D (2003) Effects of 2-amino-4,6-dinitrotoluene on p53 tumor suppressor gene expression. Mol Cell Biochem 252:387–389

    CAS  Google Scholar 

  • Barrows SE, Cramer CJ, Truhlar DG, Elovitz MS, Weber EJ (1996) Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environ Sci Technol 30:3028–3038

    CAS  Google Scholar 

  • Berthe-Corti L, Jacobi H, Kleihauer S, Witte I (1998) Cytotoxicity and mutagenicity of a 2,4,6-trinitrotoluene (TNT) and hexogen contaminated soil in S. typhimurium and mammalian cells. Chemosphere 37:209–218

    CAS  Google Scholar 

  • Boileau J, Fauquigonon C, Napoly C (1987) Explosives. In: Gerhartz W, Yamamoto YS, Kaudy L, Rounsaville JF, Schulz G (eds) Ullmann’s encyclopedia of industrial chemistry. VCH, Weinheim, pp 145–172

    Google Scholar 

  • Bolt HM, Degen GH, Dorn SB, Plottner S, Harth V (2006) Genotoxicity and potential carcinogenicity of 2,4,6-TNT trinitrotoluene: structural and toxicological considerations. Rev Environ Health 21:217–228

    CAS  Google Scholar 

  • Borch T, Inskeep WP, Harwood JA, Gerlach R (2005) Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium. Environ Sci Technol 39:7126–7133

    CAS  Google Scholar 

  • Brooks LR, Jacobson RW, Warren SH, Kohan MJ, Donnelly KC, George SE (1997) Mutagenicity of HPLC-fractionated urinary metabolites from 2,4,6-trinitrotoluene-treated Fischer 344 rats. Environ Mole Mutagen 30:298–302

    CAS  Google Scholar 

  • Bruns-Nagel D, Schmidt TC, Drzyzga O, von Low E, Steinbach K (1999) Identification of oxidized TNT metabolites in soil samples of a former ammunition plant. Environ Sci Pollut Res 6:7–10

    CAS  Google Scholar 

  • Bryant C, De Luca M (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125

    CAS  Google Scholar 

  • Bryant C, Hubbard L, McElroy WD (1991) Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae. J Biol Chem 266:4126–4130

    CAS  Google Scholar 

  • Caballero A, Esteve-Nunez A, Zylstra GJ, Ramos JL (2005a) Assimilation of nitrogen from nitrite and trinitrotoluene in P. putida JLR11. J Bacteriol 187:396–399

    CAS  Google Scholar 

  • Caballero A, Lazaro JJ, Ramos JL, Esteve-Nunez A (2005b) PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain P. putida JLR11. Environ Microb 7:1211–1219

    CAS  Google Scholar 

  • Carpenter DF, McCormick NG, Cornell JH, Kaplan AM (1978) Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl Environ Microbiol 35:949–954

    CAS  Google Scholar 

  • Duque E, Haïdour A, Godoy F, Ramos JL (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175:2278–2283

    CAS  Google Scholar 

  • Ebert S, Rieger PG, Knackmuss HJ (1999) Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2–1A. J Bacteriol 181:2669–2674

    CAS  Google Scholar 

  • Einisto P (1991) Role of bacterial nitroreductase and O-acetyltransferase in urine mutagenicity assay of rats exposed to 2,4,6-trinitrotoluene (TNT). Mutat Res 262:167–169

    CAS  Google Scholar 

  • Esteve-Nú?ez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671

    CAS  Google Scholar 

  • Fiorella PD, Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007–2015

    CAS  Google Scholar 

  • Fitzpatrick TB, Amrhein N, Macheroux P (2003) Characterization of YqjM, an Old Yellow Enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278:19891–19897

    CAS  Google Scholar 

  • Fleischmann TJ, Walker KC, Spain JC, Hughes JB, Morrie Craig A (2004) Anaerobic transformation of 2,4,6-TNT by bovine ruminal microbes. Biochem Biophys Res Commun 314:957–963

    CAS  Google Scholar 

  • French CE, Bruce NC (1995) Bacterial morphinone reductase is related to Old Yellow Enzyme. Biochem J 312(Pt 3):671–678

    CAS  Google Scholar 

  • Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S (2009) Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Acta Crystallogr D Biol Crystallogr 65:24–33

    CAS  Google Scholar 

  • Fritsche W, Scheibner K, Herre A, Hofrichter M (2000) Fungal degradation of explosives: TNT and related nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 213–238

    Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177

    CAS  Google Scholar 

  • Garmendia J, de las Heras A, Galv?o TC, de Lorenzo V (2008) Tracing explosives in soil with transcriptional regulators of P. putida evolved for responding to nitrotoluenes. Microbiol Biotechnol 1:236–246

    CAS  Google Scholar 

  • George SE, Huggins-Clark G, Brooks LR (2001) Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations. Mutat Res Genet Toxicol Environ Mutagen 490:45–56

    CAS  Google Scholar 

  • González-Pérez MM, van Dillewijn P, Wittich RM, Ramos JL (2007) Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environ Microbiol 9:1535–1540

    Google Scholar 

  • Goodwin A, Kersulyte D, Sisson G, van Zanten SJOV, Berg DE, Hoffman PS (1998) Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol 28:383–393

    CAS  Google Scholar 

  • Haïdour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370

    Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    CAS  Google Scholar 

  • Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JA, Shanks JV, Bruce NC (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Intl J Phytoremediation 9:385–401

    CAS  Google Scholar 

  • Harayama S, Rekik M (1990) The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Mol Gen Genet 221:113–120

    CAS  Google Scholar 

  • Harayama S, Rekik M, Wubbolts M, Rose K, Leppik RA, Timmis KN (1989) Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from P. putida and identification of the gene products. J Bacteriol 171:5048–5055

    CAS  Google Scholar 

  • Harter DR (1985) The use and importance of nitroaromatic compounds in the chemical industry. Heisphere Publishing, Washington, DC

    Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    CAS  Google Scholar 

  • Hofstetter TB, Heijman CG, Haderlein SB, Holliger C, Schwarzenbach RP (1999) Complete reduction of TNT and other (poly)nitroaromatic compounds under iron reducing subsurface conditions. Environ Sci Technol 33:1479–1487

    CAS  Google Scholar 

  • Homma-Takeda S, Ohkuma Y, Hiraku Y, Oikawa S, Murata M, Ogawa K (2002) 2,4,6-trinitrotoluene-induced reproductive toxicity via oxidative DNA damage by its metabolite. Free Radic Res 36:555–566

    CAS  Google Scholar 

  • Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6-trinitrotoluene and its metabolites. Ecotoxicol Environ Saf 35:282–287

    CAS  Google Scholar 

  • Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478

    CAS  Google Scholar 

  • Johnson GR, Smets BF, Spain JC (2001) Oxidative transformation of aminodinitrotoluene isomers by multicomponent dioxygenases. Appl Environ Microbiol 67:5460–5466

    CAS  Google Scholar 

  • Kaplan DL, Kaplan AM (1982) Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl Environ Microbiol 44:757–760

    CAS  Google Scholar 

  • Kaplan LA, Siedle AR (1971) Studies on boron hydrides IV. Stable hydride Meisenheimer adducts. J Org Chem 36:937–939

    CAS  Google Scholar 

  • Kato R, Oshima T, Takanaka A (1969) Studies on the mechanism of nitro reduction by rat liver. Mol Pharmacol 5:487–498

    CAS  Google Scholar 

  • Keenan BG, Wood TK (2006) Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4,6-dinitrotoluene/4-amino-2,6-dinitrotoluene. Appl Microbiol Biotechnol 73:827–838

    CAS  Google Scholar 

  • Kennel SJ, Foote LJ, Morris M, Vass AA, Griest WH (2000) Mutation analyses of a series of TNT-related compounds using the CHO-hprt assay. J Appl Toxicol 20:441–448

    CAS  Google Scholar 

  • Khan H, Harris RJ, Barna T, Craig DH, Bruce NC, Munro AW (2002) Kinetic and structural basis of reactivity of pentaerythritol tetranitrate reductase with NADPH, 2-cyclohexenone, nitroesters, and nitroaromatic explosives. J Biol Chem 277:21906–21912

    CAS  Google Scholar 

  • Kong LY, Jiang QG, Qu QS (1989) Formation of superoxide radical and hydrogen peroxide enhanced by trinitrotoluene in rat liver, brain, kidney, and testicle in vitro and monkey liver in vivo. Biomed Environ Sci 2:72–77

    CAS  Google Scholar 

  • Kroger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248

    Google Scholar 

  • Kubota A, Maeda T, Nagafuchi N, Kadokami K, Ogawa HI (2008) TNT biodegradation and production of dihydroxylamino-nitrotoluene by aerobic TNT degrader Pseudomonas sp. strain TM15 in an anoxic environment. Biodegradation 19:795–805

    CAS  Google Scholar 

  • Kutty R, Bennett GN (2005) Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Arch Microbiol 184:158–167

    CAS  Google Scholar 

  • Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55:1339–1348

    CAS  Google Scholar 

  • Letzel S, Goen T, Bader M, Angerer J, Kraus T (2003) Exposure to nitroaromatic explosives and health effects during disposal of military waste. Occup Environ Med 60:483–488

    CAS  Google Scholar 

  • Lewis TA, Goszczynski S, Crawford RL, Korus RA, Admassu W (1996) Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62:4669–4674

    CAS  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70:291–307

    Google Scholar 

  • Maeda T, Kadokami K, Ogawa HI (2006a) Characterization of 2,4,6-trinitrotoluene (TNT)-metabolizing bacteria isolated from TNT-polluted soils in the Yamada Green Zone. J Environ Biotechnol 6:33–39

    Google Scholar 

  • Maeda T, Nagafuchi N, Kubota A, Kadokami K, Ogawa HI (2006b) One-step isolation and identification of hydroxylamino-dinitrotoluenes, unstable products from 2,4,6-trinitrotoluene metabolites, with thin-layer chromatography and laser time-of-flight mass spectrometry. J Chromatogr Sci 44:96–100

    CAS  Google Scholar 

  • Maeda T, Nagafuchi N, Kubota A, Kadokami K, Ogawa HI (2007a) Identification of spontaneous conversion products of unstable 2,4,6-trinitrotoluene metabolites, hydroxylamino-dinitrotoluenes, by combination of thin-layer chromatography and laser time-of-flight mass spectrometry. J Chromatogr Sci 45:345–349

    CAS  Google Scholar 

  • Maeda T, Nakamura R, Kadokami K, Ogawa HI (2007b) Relationship between mutagenicity and reactivity or biodegradability for nitroaromatic compounds. Environ Toxicol Chem 26:237–241

    CAS  Google Scholar 

  • Maroziene A, Kliukiene R, Sarlauskas J, Cenas N (2001) Methemoglobin formation in human erythrocytes by nitroaromatic explosives. Z Naturforsch C 56:1157–1163

    CAS  Google Scholar 

  • Mason RP, Holtzman JL (1975) The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochem Biophys Res Commun 67:1267–1274

    CAS  Google Scholar 

  • Meah Y, Brown BJ, Chakraborty S, Massey V (2001) Old yellow enzyme: reduction of nitrate esters, glycerin trinitrate, and propylene 1,2-dinitrate. Proc Natl Acad Sci USA 98:8560–8565

    CAS  Google Scholar 

  • Mizuta Y, Onodera T, Singh P, Matsumoto K, Miura N, Toko K (2008) Development of an oligo(ethylene glycol)-based SPR immunosensor for TNT detection. Biosens Bioelectron 24:191–197

    CAS  Google Scholar 

  • Naal Z, Park JH, Bernhard S, Shapleigh JP, Batt CA, Abruna HD (2002) Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Anal Chem 74:140–148

    CAS  Google Scholar 

  • Nakazawa T, Yokota T (1973) Benzoate metabolism in P. putida(arvilla) mt-2: demonstration of two benzoate pathways. J Bacteriol 115:262–267

    CAS  Google Scholar 

  • Nakazawa A, Nakazawa T, Kotani S, Nozaki M, Hayaishi O (1969a) Studies on pyrocatechase. 3. Circular dichroism and optical rotatory dispersion. J Biol Chem 244:1527–1532

    CAS  Google Scholar 

  • Nakazawa T, Nozaki M, Hayaishi O, Yamano T (1969b) Sttudies on pyrocatechase II. Electron spin resonance and other properties of iron in the active center. J Biol Chem 244:119–125

    CAS  Google Scholar 

  • Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke TK, Eisentraeger A (2007) Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives. Environ Toxicol Chem 26:1090–1099

    CAS  Google Scholar 

  • Nishino SF, Spain JC (1993) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol 59:2520–2525

    CAS  Google Scholar 

  • Nokhbeh MR, Boroumandi S, Pokorny N, Koziarz P, Paterson ES, Lambert IB (2002) Identification and characterization of SnrA, an inducible oxygen-insensitive nitroreductase in Salmonella enterica serovar Typhimurium TA1535. Mutat Res 508:59–70

    CAS  Google Scholar 

  • Orville AM, Manning L, Blehert DS, Fox BG, Chambliss GH (2004a) Crystallization and preliminary analysis of xenobiotic reductase B from Pseudomonas fluorescens I-C. Acta Crystallogr D Biol Crystallogr 60:1289–1291

    Google Scholar 

  • Orville AM, Manning L, Blehert DS, Studts JM, Fox BG, Chambliss GH (2004b) Crystallization and preliminary analysis of xenobiotic reductase A and ligand complexes from P. putida II-B. Acta Crystallogr D Biol Crystallogr 60:957–961

    Google Scholar 

  • Padda RS, Wang C, Hughes JB, Kutty R, Bennett GN (2003) Mutagenicity of nitroaromatic degradation compounds. Environ Toxicol Chem 22:2293–2297

    CAS  Google Scholar 

  • Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750

    CAS  Google Scholar 

  • Park HS, Kim HS (2000) Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in P. putida HS12. J Bacteriol 182:573–580

    CAS  Google Scholar 

  • Park HJ, Reiser CO, Kondruweit S, Erdmann H, Schmid RD, Sprinzl M (1992) Purification and characterization of a NADH oxidase from the thermophile Thermus thermophilus HB8. Eur J Biochem 205:881–885

    CAS  Google Scholar 

  • Pennington JC (1999) Explosive. In: Anderson WC, Loehr RC, Smith BP (eds) Environmental availability in soils chlorinated organics explosives, metals. American Academy of Environmental Engineers Publication, New York, pp 85–109

    Google Scholar 

  • Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, Dhanasekaran DN (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol 3:325–330

    CAS  Google Scholar 

  • Rafii F, Selby AL, Newton RK, Cerniglia CE (1994) Reduction and mutagenic activation of nitroaromatic compounds by a Mycobacterium sp. Appl Environ Microbiol 60:4263–4267

    CAS  Google Scholar 

  • Ramos JL, González-Pérez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    CAS  Google Scholar 

  • Rau J, Stolz A (2003) Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol 69:3448–3455

    CAS  Google Scholar 

  • Renganathan V (1989) Possible involvement of toluene-2,3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. strain T-12. Appl Environ Microbiol 55:330–334

    CAS  Google Scholar 

  • Riefler RG, Smets BF (2000) Enzymatic reduction of 2,4,6-trinitrotoluene and related nitroarenes: Kinetics linked to one-electron redox potentials. Environ Sci Technol 34:3900–3906

    CAS  Google Scholar 

  • Rieger P-G, Knackmuss H-J (1995a) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. Plenum Press, New York

    Google Scholar 

  • Rieger P-G, Knackmuss H-J (1995b) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in comtaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 1–8

    Google Scholar 

  • Rieger PG, Sinnwell V, Preuss A, Francke W, Knackmuss HJ (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181:1189–1195

    CAS  Google Scholar 

  • Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (1999) Acute toxicity of 2,4,6-trinitrotoluene in earthworm (Eisenia andrei). Ecotoxicol Environ Saf 44:311–321

    CAS  Google Scholar 

  • Sabbioni G, Sepai O, Norppa H, Yan H, Hirvonen A, Zheng Y (2007) Comparison of biomarkers in workers exposed to 2,4,6-trinitrotoluene. Biomarkers 12:21–37

    CAS  Google Scholar 

  • Saka M (2004) Developmental toxicity of p,p?-dichlorodiphenyltrichloroethane, 2,4,6-trinitrotoluene, their metabolites, and benzo[a]pyrene in Xenopus laevis embryos. Environ Toxicol Chem 23:1065–1073

    CAS  Google Scholar 

  • Shankaran DR, Gobi KV, Sakai T, Matsumoto K, Toko K, Miura N (2005) Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene. Biosens Bioelectron 20:1750–1756

    CAS  Google Scholar 

  • Smets BF, Yin H, Esteve-Nunez A (2007) TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 76:267–277

    CAS  Google Scholar 

  • Snellinx Z, Nepovim A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitroaromatic compounds. Environ Sci Pollut Res Intl 9:48–61

    CAS  Google Scholar 

  • Somerville CC, Nishino SF, Spain JC (1995) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 177:3837–3842

    CAS  Google Scholar 

  • Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis, Boca Raton

    Google Scholar 

  • Spanggord RJ, Mortelmans KE, Griffin AF, Simmon VF (1982) Mutagenicity in Salmonella typhimurium and structure-activity relationships of wastewater components emanating from the manufacture of trinitrotoluene. Environ Mutagen 4:163–179

    CAS  Google Scholar 

  • Spanggord RJ, Stewart KR, Riccio ES (1995) Mutagenicity of tetranitroazoxytoluenes: a preliminary screening in Salmonella typhimurium strains TA100 and TA100NR. Mutat Res 335:207–211

    CAS  Google Scholar 

  • Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan JL, Matthijs S, Cornelis P, Agathos SN (2009) Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by Pseudomonas aeruginosa ESA-5. Environ Sci Technol 43:2011–2017

    CAS  Google Scholar 

  • Styles JA, Cross MF (1983) Activity of 2,4,6-trinitrotoluene in an in vitro mammalian gene mutation assay. Cancer Lett 20:103–108

    CAS  Google Scholar 

  • Sun Y, Iemitsu M, Shimojo N, Miyauchi T, Amamiya M, Sumi D (2005) 2,4,6-Trinitrotoluene inhibits endothelial nitric oxide synthase activity and elevates blood pressure in rats. Arch Toxicol 79:705–710

    CAS  Google Scholar 

  • Tadros MG, Crawford A, Mateo-Sullivan A, Zhang C, Hughes JB (2000) Toxic effects of hydroxylamino intermediates from microbial transformation of trinitrotoluene and dinitrotoluene on algae Selenastrum capricornutum. Bull Environ Contam Toxicol 64:579–585

    CAS  Google Scholar 

  • Tan EL, Ho CH, Griest WH, Tyndall RL (1992) Mutagenicity of trinitrotoluene and its metabolites formed during composting. J Toxicol Environ Health 36:165–175

    CAS  Google Scholar 

  • Tatsumi K, Koga N, Kitamura S, Yoshimura H, Wardman P, Kato Y (1979) Enzymic cis/trans isomerization of nitrofuran derivatives: isomerizing activity of xanthine oxidase, lipoyl dehydrogenase, DT-diaphorase and liver microsomes. Biochim Biophys Acta 567:75–87

    CAS  Google Scholar 

  • Vaatanen AR (1997) Spectrum of spontaneous and 2,4,6-trinitrotoluene (TNT)-induced mutations in Salmonealla typhymurium strains with different nitroreductase and o-acetyltransferase activities. Mutat Res 379:185–190

    CAS  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252

    CAS  Google Scholar 

  • Watanabe M, Ishidate M Jr, Nohmi T (1990) Nucleotide sequence of Salmonella typhimurium nitroreductase gene. Nucleic Acids Res 18:1059

    CAS  Google Scholar 

  • Watrous MM, Clark S, Kutty R, Huang S, Rudolph FB, Hughes JB, Bennett GN (2003) 2,4,6-trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum. Appl Environ Microbiol 69:1542–1547

    CAS  Google Scholar 

  • Williams RE, Rathbone DA, Moody PC, Scrutton NS, Bruce NC (2001) Degradation of explosives by nitrate ester reductases. Biochem Soc Symp 68:143–153

    CAS  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574

    CAS  Google Scholar 

  • Wittich RM, Ramos JL, van Dillewijn P (2009) Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth. Environ Sci Technol 43:2773–2776

    CAS  Google Scholar 

  • Wolper MK, Althans JR, Johns DG (1973) Nitroreductase activity of mammalian liver aldehyde oxidase. J Pharmacol Exp Ther 185:202–213

    Google Scholar 

  • Won WD, DiSalvo LH, Ng J (1976) Toxicity and mutagenicity of 2,4,-6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol 31:576–580

    CAS  Google Scholar 

  • Yin H, Wood TK, Smets BF (2005) Reductive transformation of TNT by Escherichia coli: pathway description. Appl Microbiol Biotechnol 67:397–404

    CAS  Google Scholar 

  • Zenno S, Saigo K, Kanoh H, Inouye S (1994) Identification of the gene encoding the major NAD (P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744. J Bacteriol 176:3536–3543

    CAS  Google Scholar 

  • Zenno S, Koike H, Kumar AN, Jayaraman R, Tanokura M, Saigo K (1996a) Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J Bacteriol 178:4508–4514

    CAS  Google Scholar 

  • Zenno S, Koike H, Tanokura M, Saigo K (1996b) Conversion of NfsB, a minor Escherichia coli nitroreductase, to a flavin reductase similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri, by a single amino acid substitution. J Bacteriol 178:4731–4733

    CAS  Google Scholar 

  • Ziganshin AM, Gerlach R, Borch T, Naumov AV, Naumova RP (2007) Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl Environ Microbiol 73:7898–7905

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinari Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maeda, T., Ogawa, H.I. (2012). Microbial Degradation of 2,4,6-Trinitrotoluene: Application to Explosives Sensor. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_8

Download citation

Publish with us

Policies and ethics