Skip to main content

Dynamical Systems and Hyperbolicity

  • Chapter
Hyperbolic Chaos
  • 1489 Accesses

Abstract

In this chapter we review basic notions of the theory of dynamical systems essential for understanding subsequent chapters of the book. Particularly, a definition of the dynamical system is discussed and some important classes like continuous-time and discrete-time systems, conservative and dissipativc systems, autonomous and non-autonomous systems are introduced. Interpretation of dynamics as evolution of a cloud of representative points in the state space is considered and implemented for explanation of chaos and, particularly, for the uniformly hyperbolic attractors, like Smale-Williams solenoid, DA attractor of Smale, and Plykin type attractors. Lyapunov exponents as a tool for quantitative approach to analyzing chaotic or regular dynamics are examined, and methodic of their computation is discussed. Main notions of the hyperbolic theory are considered, and its substational content is briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Amer. Math. Soc. 114, 309–319 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  • Afraimovich, V., Hsu. S.-B.: Lectures on Chaotic Dynamical Systems. International Press, Somerville, MA (2003).

    MATH  Google Scholar 

  • Andronov, A., Pontrjagin, L.: SystĂ©mes Grossiers. Dokl. Akad. Nauk. SSSR 14, 247–251 (1937).

    Google Scholar 

  • Andronov, A.A., Vitt, A.A., KhaĂŻkin, S.É.: Theory of oscillators. Pergamon Press (1966).

    Google Scholar 

  • Anishchenko. V.S.: Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments. Springer, Heidelberg (2002).

    MATH  Google Scholar 

  • Anishchenko, VS., Astakhov, V., Vadivasova, T., Neiman, A., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Springer, Berlin, Heidelberg (2007).

    Google Scholar 

  • Anosov, D.V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov 90, 3–210 (1967).

    MathSciNet  Google Scholar 

  • Anosov, D.V., Gould, G.G., Aranson, S.K., Grines, V.Z., Plykin, R.V., Safonov, A.V.

    Google Scholar 

  • Sataev, H.A.. Shlyachkov. S.V., Solodov, V.V., Starkov, A.N., Stepin. A.M.: Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour (Encyclopaedia of Mathematical Sciences) (v. 9). Springer, New York (1995).

    Google Scholar 

  • Arnold, V.I.: Ordinary Differential Equations. The MIT Press, Somerville, MA (1978).

    Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, Heidelberg (1989).

    Google Scholar 

  • Arnold. V.I., Avez, A.: Ergodic Problems in Classical Mechanics. Benjamin, New York (1968).

    Google Scholar 

  • Barreira, L., Pesin, Y: Lectures on Lyapunov exponents and smooth ergodic theory. In: Smooth Ergodic Theory and Its Applications. Proceedings of Symposia in Pure Mathematics, pp. 3–90. AMS (2001).

    Google Scholar 

  • Beck, C., Schlogl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge University Press, Cambridge (1993).

    Book  Google Scholar 

  • Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Meccanica 15, 9–30 (1980).

    Article  ADS  MATH  Google Scholar 

  • Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, Provindence RI (1927).

    MATH  Google Scholar 

  • Bonatti, C., Diaz, L.J., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probobalistic Perspective. Encyclopedia of Mathematical Sciences. Vol.102. Springer, Berlin, Heidelberg, New York (2005).

    Google Scholar 

  • Bowen R.: Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470, Springer, Heidelberg (1975).

    Google Scholar 

  • Coudcnc, Y.: Pictures of hyperbolic dynamical systems. Notices of the American Mathematical Society 53, 8–13 (2006).

    MathSciNet  Google Scholar 

  • Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Westview Press, New York (2003).

    MATH  Google Scholar 

  • Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attraclors. Rev. Mod. Phys. 57, 617–656 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and Its Applications 1. Wiley, New York (1968).

    Google Scholar 

  • Greene, J.M., Kim, J.-S.: The calculation of Lyapunov spectra. Physica D 24, 213–225 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Grines, V.Z., Zhuzhoma, E.V.: Expanding attractors. Regular and Chaotic Dynamics 11(2), 225–246 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Guckenheimer, J.. Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York (1983).

    MATH  Google Scholar 

  • Hasselblatt, B., Katok, A.A.: First Course in Dynamics: with a Panorama of Recent Developments. Cambridge University Press, Cambridge (2003).

    MATH  Google Scholar 

  • Hasselblatt, B., Pesin, Y.. Schmeling, J.: Pointwise Hyperbolicity Implies Uniform Hyperbolicity. Preprint ESI 2067, Vienna (2008).

    Google Scholar 

  • Hasselblatt, B., Young, L.S.: Anosov and axiom a systems. In: Scott, A. (ed) Encyclopedia of Nonlinear Science, pp. 11–13. Routledge, New York (2005).

    Google Scholar 

  • HĂ©non. M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976).

    Article  ADS  MATH  Google Scholar 

  • Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, Cambridge (2000).

    Book  MATH  Google Scholar 

  • Kaplan, J.L., Yorke, J.A.: A chaotic behavior of multi-dimensional differential equations. In: Peitgen, H.-O. and Walthcr, H.-O. (eds.) Functional Differential Equations and Approximations of Fixed Points. Lecture Notes in Mathematics, 730, pp. 204–227. Springer, Berlin, New York (1979).

    Chapter  Google Scholar 

  • Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995).

    MATH  Google Scholar 

  • Kifer, Yu.I.: On small random perturbations of some smooth dynamical systems. Math. USSR Ivestija 8, 1083–1107 (1974).

    Article  MATH  Google Scholar 

  • Kolmogorov. A.N.: Entropy per unit time as a metric invariant of automorphism. Doklady Acad. Sci. SSSR 124. 754–755 (1959).

    MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. Springer, New York, Berlin, Heidelberg (1998).

    MATH  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Mechanics (Course of Theoretical Physics, vol.1). Butterworth-Heinemann, Oxford (1976).

    Google Scholar 

  • Manneville, P.: Dissipative structures and weak turbulence. In: Chaos — The Interplay Between Stochastic and Deterministic Behaviour. Lecture Notes in Physics 457, 257–272 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  • Milnor. J.: On the concept of attractor. Communications in Mathematical Physics, 99, 177–195 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Newhouse, S.E.: The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publications MathĂ©matiques de L’IHÉS 50, 101–151 (1979).

    MathSciNet  MATH  Google Scholar 

  • Oseledets, V.I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968).

    MATH  Google Scholar 

  • Ott, E.: Chaos in dynamical systems. Cambridge University Press, Cambridge (2002).

    MATH  Google Scholar 

  • Palis, J.: On Morse-Smale dynamical systems. Topology 8, 385–405 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  • Palmer, K. J.: Shadowing lemma for flows. Scholarpedia 4(4), 7918 (2009).

    Article  MathSciNet  Google Scholar 

  • Pesin, Y.B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32, 55–114(1977).

    Article  MathSciNet  ADS  Google Scholar 

  • Pesin, Ya.: Existence and genericity problems for dynamical systems with nonzero Lyapunov exponents. Regular and Chaotic Dynamics 12, 476–489 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pesin, Ya.B.: Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich lectures in advanced mathematics. European Mathematical Society (2004).

    Google Scholar 

  • Plykin, R.V.: Sources and sinks of A-diffeomorphisms of surfaces. Math. USSR Sb. 23, 233–253 (1974).

    Article  MATH  Google Scholar 

  • Rabinovich, M.I.. Trubetskov, D.I.: Oscillations and Waves: In Linear and Nonlinear Systems, Kluwcr Academic Publication, The Netherlands (1989).

    MATH  Google Scholar 

  • Raghunathan, M.S. A proof of Oseledec’s multiplicative ergodic theorem. Israel Journal of Mathematics 32(4), 356–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Ruelle, D.: A measure associated with Axiom A atlractors. Amer. J. Math. 98, 619–654 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  • Ruelle, D., Takens. E: On the nature of turbulence Commun. Math. Phys. 20. 167–192 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sagdeev, R.Z., Usikov, D.A., Zaslavsky, G.M.: Nonlinear physics: from the pendulum to turbulence and chaos. CRC Press, Boca Raton, FLA (1988).

    MATH  Google Scholar 

  • Schuster, H.G., Just, W. Deterministic Chaos: An Introduction. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG (2005).

    Book  MATH  Google Scholar 

  • Shilnikov, L.: Mathematical problems of nonlinear dynamics: a tutorial. Int. J. of Bifurcation and Chaos 7, 1353–2001 (1997).

    Article  MathSciNet  Google Scholar 

  • Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Non-linear Dynamics (Part 1). World Scientific, Singapore (1998).

    Book  Google Scholar 

  • Shilnikov. A.L., Turaev, D.V., Chua. L.O., Shilnikov, L.P.: Methods of Qualitative Theory in Non-linear Dynamics (Part 2). World Scientific, Singapore (2002).

    Google Scholar 

  • Sinai, Y.G.: On the Notion of Entropy of a Dynamical System. Doklady Acad. Sci. SSSR 124, 768–771 (1959).

    MathSciNet  MATH  Google Scholar 

  • Sinai, Y.G.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27, 21–70 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sinai, Y.G.: Stochasticity of dynamical systems. In: Gaponov-Grekhov, A.V. (ed.) Nolinear waves, pp. 192–212. Moscow, Nauka (1979).

    Google Scholar 

  • Schuster, H.G. and Just, W. Deterministic chaos: an introduction. Wiley-VCH (2005).

    Google Scholar 

  • Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. (NS) 73, 747–817 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  • Strogatz, S.U.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, MA (2001).

    Google Scholar 

  • TĂ©l, T. and Gruiz, M.: Chaotic dynamics: an Introduction Based on Classical Mechanics. Cambridge University Press, Cambridge (2006).

    MATH  Google Scholar 

  • Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986).

    MATH  Google Scholar 

  • Vul, E.B., Sinai, Y.G., Khanin, K.M.: Feigenbaum universality and the thermodynamic formalism. Russ. Math. Surv. 39, 1–40 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  • Williams, R.F.: Expanding attractors. Publications mathĂ©matiques de l’I.H.É.S. 43, 169–203 (1974).

    Article  ADS  Google Scholar 

  • Zhirov, A.Yu.: Hyperbolic attractors of diffeomorphisrns of orientable surfaces. Russ. Ac. Sci. Sb. Math. 83, 23–66 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuznetsov, S.P. (2012). Dynamical Systems and Hyperbolicity. In: Hyperbolic Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23666-2_1

Download citation

Publish with us

Policies and ethics