Skip to main content

Role of Mycorrhiza in Re-forestation at Heavy Metal-Contaminated Sites

  • Chapter
  • First Online:
Bio-Geo Interactions in Metal-Contaminated Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

Re-forestation of mining areas is essential to limit soil erosion by wind and water, including runoff of metallic sediments. Here, we will focus on ectomycorrhizal (ECM) fungi, the predominant group of root symbionts of pioneer trees that are essential in afforestation and re-forestation practices. We review the literature dealing with the diversity and functional strategies of ECM communities and population on metal-contaminated forest sites in trees established on heavy metal-contaminated areas in different stages of succession. New knowledge gained from investigation of the ECM community in a former uranium mining area and an undisturbed site is included. In addition, molecular biological investigation of the ECM fungus Tricholoma vaccinum demonstrates changed gene expression profiles after contact with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558

    Article  PubMed  CAS  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae – a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2006) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwäbisch Gmünd, Germany

    Google Scholar 

  • Ahonen-Jonnarth U, van Hees PAW, Lundstrom US, Finlay RD (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    Article  PubMed  Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409–418

    Article  Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). J Plant Nutr Soil Sci 169:516–522

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67

    Article  CAS  Google Scholar 

  • Boult S, Hand VL, Vaughan DJ (2006) Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface. Sci Total Environ 372(1):299–305

    Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understnding global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Colpaert JV (2008) Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 157–173

    Chapter  Google Scholar 

  • Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J (2004) Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol 162:549–559

    Article  CAS  Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    Article  PubMed  CAS  Google Scholar 

  • Cripps CL (2004) Ectomycorrhizal fungi above and below ground in a small, isolated aspen stand: a simple system reveals fungal fruiting strategies and an edge effect. In: Cripps (ed) Fungi in Forest Ecosystems: systematics, diversity and ecology, New York Botanical Garden Press, New York, pp 249–265

    Google Scholar 

  • Cromack K; Sollins P; Graustein WC; Speidel, K, Todd, AW, Spycher, G, Li CY, Todd RL (1979) Calcium-oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium-crassum. Soil Biol Biochem 11(5):463–468

    Google Scholar 

  • Dancis A, Klausner RD, Hinnesbuch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301

    PubMed  CAS  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  PubMed  CAS  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59(5):1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Fiore-Donno AM, Martin F (2001) Populations of ectomycorrhizal Laccaria amethystina and Xerocomus spp. show contrasting colonization patterns in a mixed forest. New Phytol 152(3):533–542

    Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F, Gadd GM (2008) Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18(9):R357–R377

    Article  Google Scholar 

  • Frey B, Zierold K, Brunner I (2000) Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abiesHebeloma crustuliniforme ectomycorrhizas. Plant Cell Environ 23:1257–1266

    Article  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176(1):22–36

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  PubMed  CAS  Google Scholar 

  • Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identificcation of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Above- and below-ground views. Can J Bot 74:1572–1583

    Google Scholar 

  • Gebhardt S, Neubert K, Wöllecke J, Münzenberger B, Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17:279–290

    Article  PubMed  CAS  Google Scholar 

  • Godbold DL (1994) Aluminium and heavy metal stress: from the rhizosphere to the whole plant. In: Gobold DL, Hüttermann A (eds) Effects of acid rain on forest processes. Wiley-Liss, New York, pp 231–264

    Google Scholar 

  • Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J (2009) Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycol Res 113:1377–1388

    Article  PubMed  CAS  Google Scholar 

  • Gryta H, Debaud JC, Marmeisse R (2001) Population dynamics of the symbiotic mushroom Hebeloma cylindrosporum: mycelial persistence and inbreeding. Heredity 84:294–302

    Article  Google Scholar 

  • Gryta H, Debaud JC, Effosse A, Gay G, Marmeisse R (1997) Fine-scale structure of populations of the ectomycorrhizal fungus Hebeloma cylindrosporum in coastal sand dune forest ecosystems. Mol Ecol 6(4):353–364

    Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • Hogberg N, Guidot A, Jonsson M, Dahlberg A (2009) Microsatellite markers for the ectomycorrhizal basidiomycete Lactarius mammosus. Mol Ecol Resour 9(3):1008–1010

    Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339

    Article  Google Scholar 

  • Iordache V, Gherghel F, Kothe E (2009) Assessing the effect of disturbances on ectomycorrhiza diversity. Int J Environ Res Public Health 6:416–422

    Article  Google Scholar 

  • Iordache V, Kothe E, Neagoe A, Gherghel F (2011) A conceptual framework for up-scaling ecological processes and application to ectomycorrhizal fungi. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae. Springer, Berlin, pp 255–300

    Google Scholar 

  • Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630

    Article  PubMed  Google Scholar 

  • Jacob C, Courbot ML, Martin F, Brun A, Chalot M (2004) Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Lett 576(3):423–427

    Article  PubMed  CAS  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mossae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils 33(5):351–357

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102:429–442

    Article  CAS  Google Scholar 

  • Jumpponen A, Jones KL (2010) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    Article  Google Scholar 

  • Kalač P, Burda J, Staskova I (1991) Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. Sci Total Environ 105:109–119

    Article  PubMed  Google Scholar 

  • Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander I, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  Google Scholar 

  • Kothe E, Bergmann H, Buchel G (2005) Molecular mechanisms in bio-geo-interactions: from a case study to general mechanisms. Chem Erde 65(S1):7–27

    Article  CAS  Google Scholar 

  • Krause K, Kothe E (2006) Use of RNA fingerprinting to identify fungal genes specifically expressed during ectomycorrhizal interaction. J Basic Microbiol 46(5):387–399

    Article  PubMed  CAS  Google Scholar 

  • Kretzer AM, Dunham S, Molina R, Spatafora JW (2003) Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol 161:313–320

    Article  Google Scholar 

  • Krpata D, Peintner U, Langer I, Fitz JW, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:106–1079

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  • Mankel A, Krause K, Kothe E (2002) Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl Environ Microbiol 68(3):1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altaian WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Marschner P, Godbold DL, Jentschke G (1996) Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies (L) Karst). Plant Soil 178(2):239–245

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183):88–92

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, AuryJ-M BP, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Mleczko P (2004) Mycorrhizal and saprobic macrofungi of two zinc wastes in southern Poland. Acta Biol Cracov Ser Bot 46:25–38

    Google Scholar 

  • Muehlmann O, Bacher M, Peintner U (2008) Polygonum viviparum mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 18:87–95

    Article  Google Scholar 

  • Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    Article  PubMed  CAS  Google Scholar 

  • Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198

    Article  PubMed  Google Scholar 

  • Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores – structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Perotto S, Martino E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnologica 13:55–63

    Google Scholar 

  • Plassard C, Fransson P (2009) Regulation of low molecular weight organic acid production in fungi. Fungal Biol Rev 23:30–39

    Article  Google Scholar 

  • Pritsch K, Munch JC, Buscot F (1997) Morphological and anatomical characterisation of black alder Alnus glutinosa (L.) Gaertn. Ectomycorrhizas. Mycorrhiza 7(4):201–216

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  • Rajala T (2008) Responses of soil microbial communities to clonal variation of Norway spruce. Dissertation, University of Helsinki, Finland

    Google Scholar 

  • Rineau F, Courty PE, Uroz S, Buée M, Garbaye J (2008) Simple microplate assays to measure iron mobilization and oxalate secretion by ectomycorrhizal tree roots. Soil Biol Biochem 40:2460–2463

    Article  CAS  Google Scholar 

  • Rosling A, Lindahl BD, Taylor AFS, Finlay RD (2004) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47(1):31–37

    Google Scholar 

  • Rudawska M, Leski T, Trocha LK, Gornowicz R (2006) Ectomycorrhizal status of Norway spruce seedlings from bare-root forest nurseries. Ecol Manag 236:375–384

    Article  Google Scholar 

  • Rühling A, Söderström B (1990) Changes in fruitbody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in north Sweden. Water Air Soil Pollut 49:375–387

    Article  Google Scholar 

  • Rühling A, Bååth E, Nordgren A, Söderström B (1984) Fungi in metal-contaminated soil near the Gusum brass mill, Sweden. Ambio 13:34–36

    Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sell J, Kayser A, Schulin R, Brunner I (2005) Contribution of ectomacorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277:245–253

    Article  CAS  Google Scholar 

  • Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function and importance. Can J Bot 82(8):1140–1165

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Staudenrausch S, Kaldorf M, Renker C, Luis P, Buscot F (2005) Diversity of the ectomycorrhiza community at a uranium mining heap. Biol Fertil Soils 41:439–446

    Article  Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    Article  CAS  Google Scholar 

  • Tedersoo L, Suvi T, Larsson E, Koljalg U (2006) Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol Res 110:734–748

    Article  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4):217–263

    Article  PubMed  Google Scholar 

  • Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293

    Article  PubMed  Google Scholar 

  • Turnau K, Gucwa E, Mleczko P, Godzik B (1988) Metal content in fruit-bodies and mycorrhizas of Pisolithus arrhizus from zinc wastes in Poland. Acta Mycologica 33:59–67

    Google Scholar 

  • Turnau K, Mleczko P, Blaudez D, Chalot M, Botton B (2002) Heavy metal binding properties of Pinus sylvestris mycorrhizas from industrial wastes. Acta Societatis Botanicorum Poloniae 71:253–261

    CAS  Google Scholar 

  • van Hees PAW, Rosling A, Lundstrom US, Finlay RD (2006) The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma 136(1–2):364–377

    Article  Google Scholar 

  • van Scholl L, Hoffland E, van Breemen N (2006) Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol 170(1):153–163

    Google Scholar 

  • van Scholl L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  Google Scholar 

  • Vrålstad T, Myhre E, Schumacher T (2002) Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155:131–148

    Article  Google Scholar 

  • Wilkins DA (1991) The influence of sheathing (ecto-) mycorrhizas of trees on the uptake and toxicity of metals. Agr Ecosyst Environ 35:245–260

    Article  CAS  Google Scholar 

  • Wilkinson DM, Dickinson NM (1995) Metal resistance in trees: the role of mycorrhizae. Oikos 72:298–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gherghel, F., Krause, K. (2012). Role of Mycorrhiza in Re-forestation at Heavy Metal-Contaminated Sites. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_10

Download citation

Publish with us

Policies and ethics