Skip to main content

Muscarinic Receptors in Brain Stem and Mesopontine Cholinergic Arousal Functions

  • Chapter
  • First Online:
Book cover Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

All five muscarinic receptor subtypes and mRNAs are found widely in the brain stem, with M2 muscarinic receptors most concentrated in the hindbrain. Three cholinergic cell groups, Ch5: pedunculopontine (PPT); Ch6: laterodorsal tegmental (LDT); Ch8: parabigeminal (PBG), are found in the tegmentum. Ch5,6 neurons are activated by arousing and reward-activating stimuli, and inhibited via M2-like autoreceptors. Ch5,6 ascending projections activate many forebrain regions, including thalamus, basal forebrain, and orexin/hypocretin neurons (via M3 receptors) for waking arousal and attention. Ch5,6 activation of dopamine neurons of the ventral tegmental area and substantia nigra (via M5 receptors) increases reward-seeking and energizes motor functions. M5 receptors on dopamine neurons facilitate brain-stimulation reward, opiate rewards and locomotion, and male ultrasonic vocalizations during mating in rodents. Ch5 cholinergic activation of superior colliculus intermediate layers facilitates fast saccades and approach turns, accompanied by nicotinic and muscarinic inhibition of the startle reflex in pons. Ch8 PBG neurons project to the outer layers of the superior colliculus only, where M2 receptors are associated with retinotectal terminals. Ch5,6 descending projections to dorsal pontine reticular formation contribute to M2-dependent REM sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basile AS, Federava I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 99:11452–11457

    PubMed  CAS  Google Scholar 

  • Bayer L, Eggermann E, Serafin M, Grivel J, Machard D, Muhlethaler M, Jones BE (2005) Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience 130:807–811

    PubMed  CAS  Google Scholar 

  • Bechara A, van der Kooy D (1989) The tegmental pedunculopontine nucleus: a brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine. J Neurosci 9:3400–3409

    PubMed  CAS  Google Scholar 

  • Beninato M, Spencer RF (1988) The cholinergic innervation of the substantia nigra: a light and electron microscopic immunohistochemical study. Exp Brain Res 72:178–184

    PubMed  CAS  Google Scholar 

  • Bina K, Rusak B, Semba K (1993) Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J Comp Neurol 335:295–307

    PubMed  CAS  Google Scholar 

  • Bolam JP, Francis CM, Henderson Z (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41:483–494

    PubMed  CAS  Google Scholar 

  • Bosch D, Schmid S (2006) Activation of muscarinic cholinergic receptors inhibits giant neurons in the caudal pontine reticular nucleus. Eur J Neurosci 24:1967–1975

    PubMed  Google Scholar 

  • Bosch D, Schmid S (2008) Cholinergic mechanism underlying prepulse inhibition of the startle response in rats. Neuroscience 155:326–335

    PubMed  CAS  Google Scholar 

  • Brudzynski SM, Wu M, Mogenson GJ (1988) Modulation of locomotor activity induced by injections of carbachol into the tegmental pedunculopontine nucleus and adjacent areas in the rat. Brain Res 451:119–125

    PubMed  CAS  Google Scholar 

  • Burlet S, Tyler CJ, Leonard CS (2002) Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 22:2862–2872

    PubMed  CAS  Google Scholar 

  • Bymaster FP, McKinzie DL, Felder CC, Wess J (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28:437–442

    PubMed  CAS  Google Scholar 

  • Cain S, Verwey M, Szybowska M, Ralph MR, Yeomans JS (2007) Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Res 1177:59–65

    PubMed  CAS  Google Scholar 

  • Chapman CA, Yeomans JS, Blaha CD, Blackburn JR (1997) Increased striatal dopamine efflux follows scopolamine administered systemically or to the tegmental pedunculopontine nucleus. Neuroscience 76:177–186

    PubMed  CAS  Google Scholar 

  • Coleman CG, Lydic R, Baghdoyan HA (2004) M2 muscarinic receptors in pontine reticular formation of C57BL/6J mouse contribute to rapid eye movement sleep generation. Neuroscience 126:821–830

    PubMed  CAS  Google Scholar 

  • Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284

    PubMed  CAS  Google Scholar 

  • Corrigall WA, Coen KL, Adamson KM (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284

    PubMed  CAS  Google Scholar 

  • Datta S (2002) Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptors. J Neurophysiol 87:1790–1798

    PubMed  CAS  Google Scholar 

  • Dringenberg HC, Olmstead MC (2003) Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats. Neuroscience 119:839–853

    PubMed  CAS  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 156:216–224

    PubMed  CAS  Google Scholar 

  • Ferrari-DiLeo G, Waelbroeck M, Mash DC, Flynn DD (1994) Selective labelling and localization of the M4 (m4) muscarinic receptor subtype. Mol Pharmacol 46:1028–1035

    PubMed  CAS  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    PubMed  CAS  Google Scholar 

  • Flynn DD, Reever CM, Ferrari-DiLeo G (1997) Pharmacological strategies to selectively label and localize muscarinic receptor subtypes. Drug Dev Res 40:104–116

    CAS  Google Scholar 

  • Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neuronsprojecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196

    PubMed  CAS  Google Scholar 

  • Forster G, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Pharmacol 12:3596–3604

    CAS  Google Scholar 

  • Forster GL, Yeomans JS, Takeuchi J, Blaha CD (2002) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 22:1–6

    Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, New York, NY

    Google Scholar 

  • Futami K, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342

    PubMed  CAS  Google Scholar 

  • Garcia-Rill E, Biedermann JA, Chambers T, Skinner RD, Mrak RE, Husain M, Karson CN (1995) Mesopontine neurons in schizophrenia. Neuroscience 66:321–335

    PubMed  CAS  Google Scholar 

  • Garzón M, Pickel VM (2006) Subcellular distribution of M2 muscarinic receptors in relation to dopaminergic neurons of the rat ventral tegmental area. J Comp Neurol 498:821–839

    PubMed  Google Scholar 

  • German DC, Manaye KF, Wu D, Hersh LB, Zweig RM (1999) Mesopontine cholinergic and non-cholinergic neurons in schizophrenia. Neuroscience 94:33–38

    PubMed  CAS  Google Scholar 

  • Gillette MU, Buchanan GF, Artinian L, Hamilton SE, Nathanson NM, Liu C (2001) Role of the M1 receptor in regulating circadian rhythms. Life Sci 68:2467–2472

    PubMed  CAS  Google Scholar 

  • Harding SM, McGinnis MY (2005) Microlesions of the ventromedial nucleus of the hypothalamus: effects on sociosexual behaviors in male rats. Behav Neurosci 119:1227–1234

    PubMed  Google Scholar 

  • Henny P, Jones BE (2006) Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 499:645–661

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Wise RA (2002) Rewarding effects of the cholinergic agents carbachol and neostigmine in the posterior ventral tegmental area. J Neurosci 22:9895–9904

    PubMed  CAS  Google Scholar 

  • Isa T, Hall WC (2009) Exploring the superior colliculus in vitro. J Neurophysiol 102:2581–2593

    PubMed  Google Scholar 

  • Katner SN, McBride WJ, Lumeng L, Li T, Murphy JM (1997) Alcohol intake of P rats is regulated by muscarinic receptors in the pedunculopontine nucleus and VTA. Pharmacol Biochem Behav 58:497–504

    PubMed  CAS  Google Scholar 

  • Kayama Y, Koyama Y (2003) Control of sleep and wakefulness by brainstem monoaminergic and cholinergic neurons. Acta Neurochir Suppl 87:3–6

    PubMed  CAS  Google Scholar 

  • Kayama Y, Ohta M, Jodo E (1992) Firing of “possibly” cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 569:210–220

    PubMed  CAS  Google Scholar 

  • Klink R, d’Exaerde AD, Zoli M, Changeux J (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Okada K (2007) Reward prediction error computation in the pedunculopontine tegmental nucleus neurons. Ann N Y Acad Sci 1104:310–323

    PubMed  CAS  Google Scholar 

  • Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97:71–82

    PubMed  CAS  Google Scholar 

  • Kofman O, McGlynn S, Olmstead MC, Yeomans JS (1990) Differential effects of atropine, procaine and dopamine in the rat ventral tegmentum on lateral hypothalamic rewarding brain stimulation. Behav Brain Res 38:55–68

    PubMed  CAS  Google Scholar 

  • Lacey MG, Calabresi P, North RA (1990) Muscarine depolarizes rat substantia nigra zona compacta and ventral tegmental neurons in vitro through M1-like receptors. J Pharmacol Exp Ther 253:395–400

    PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65

    PubMed  CAS  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    PubMed  CAS  Google Scholar 

  • Leitner DS, Cohen ME (1985) Role of the inferior colliculus in the inhibition of acoustic startle in the rat. Physiol Behav 34:65–70

    PubMed  CAS  Google Scholar 

  • Leonard CS, Llinas R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59:309–330

    PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Heilman CJ, Desmond TJ, Frey KA (1994) Localization of muscarinic M3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63:207–221

    PubMed  CAS  Google Scholar 

  • Liu C, Gillette MU (1996) Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J Neurosci 16:744–751

    PubMed  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2006) The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci USA 103:5167–5172

    PubMed  CAS  Google Scholar 

  • Luebke JI, McCarley RW, Greene RW (1993) Inhibitory action of muscarinic agonists on neurons in the rat laterodorsal tegmental nucleus in vitro. J Neurophysiol 70:2128–2135

    PubMed  CAS  Google Scholar 

  • Mathur A, Shandarin A, LaViolette SR, Parker J, Yeomans JS (1997) Locomotion and stereotypy induced by scopolamine: contributions of muscarinic receptors near the pedunculopontine tegmental nucleus. Brain Res 775:144–155

    PubMed  CAS  Google Scholar 

  • McCormick DA (1989) Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci 12:215–221

    PubMed  CAS  Google Scholar 

  • Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res 58:265–271

    CAS  Google Scholar 

  • Mesulam M, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat. An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    PubMed  CAS  Google Scholar 

  • Michel FJ, Fortin G, Martel P, Yeomans J, Trudeau L-E (2005) Muscarinic receptors mediate Ca++ influx in rat mesencephalic GABAergic neurons through PKC-dependent activation of receptor-operated channels. Neuropharmacology 48:796–809

    PubMed  CAS  Google Scholar 

  • Middaugh LD, Szumlinski KK, Van Patten Y, Marlowe AL, Kalivas PW (2003) Chronic ethanol consumption by C57BL/6 mice promotes tolerance to interoceptive cues and increases extracellular dopamine, an effect blocked by naltrexone. Alcohol Clin Exp Res 27:1892–1900

    PubMed  CAS  Google Scholar 

  • Miller AD, Forster GL, Yeomans JS, Blaha CD (2005) Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 136:531–538

    PubMed  CAS  Google Scholar 

  • Nandi D, Jenkinson N, Stein J, Aziz T (2008) The pedunculopontine nucleus in Parkinson’s disease: primate studies. Br J Neurosurg 22:S4–S8

    PubMed  Google Scholar 

  • Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to the substantia nigra differ significantly from those projecting to the ventral tegmental area. J Neurosci 15:5859–5869

    PubMed  CAS  Google Scholar 

  • Oakman SA, Faris PL, Cozzari C, Hartman BK (1999) Characterization of the extent of pontomesencephalic cholinergic neurons’ projections to the thalamus: comparison with projections to midbrain dopaminergic groups. Neuroscience 94:529–547

    PubMed  CAS  Google Scholar 

  • Olmstead MC, Franklin KBJ (1993) Effects of pedunculopontine tegmental nucleus lesions on morphine-induced conditioned place preference and analgesia in the formalin test. Neuroscience 57:411–418

    PubMed  CAS  Google Scholar 

  • Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783

    PubMed  Google Scholar 

  • Pan WX, Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732

    PubMed  CAS  Google Scholar 

  • Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic, San Diego, CA

    Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Pereira EA, Muthusamy KA, De PN, Joint CA, Aziz TZ (2008) Deep brain stimulation of the pedunculopontine nucleus in Parkinson’s disease. Preliminary experience at Oxford. Br J Neurosurg 22:S41–S44

    PubMed  Google Scholar 

  • Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16:1883–1887

    PubMed  Google Scholar 

  • Rada PV, Mark GP, Yeomans JS, Hoebel BG (2000) Acetylcholine release in ventral tegmental area by hypothalamic self-stimulation, eating and drinking. Pharmacol Biochem Behav 55:131–141

    Google Scholar 

  • Reever CM, Ferrari-DiLeo G, Flynn DD (1997) The M5 (m5) receptor subtype: fact or fiction? Life Sci 60:1105–1115

    PubMed  CAS  Google Scholar 

  • Sahibzada N, Dean P, Redgrave P (1986) Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J Neurosci 6:723–733

    PubMed  CAS  Google Scholar 

  • Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46:297–308

    PubMed  CAS  Google Scholar 

  • Scarnati E, Proia E, Campana E, Pacitti C (1986) A microiontophoretic study on the nature of the putative neurotransmitter involved in pedunculopontine-substantia nigra pars compacta excitatory pathway in the rat. Exp Brain Res 62:470–478

    PubMed  CAS  Google Scholar 

  • Semba K (1993) Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 330:543–556

    PubMed  CAS  Google Scholar 

  • Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro-and antero-grade transport and immunohistochemical study. J Comp Neurol 323:387–410

    PubMed  CAS  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    PubMed  Google Scholar 

  • Sharf R, Ranaldi R (2006) Blockade of muscarinic acetylcholine receptors in the ventral tegmental area disrupts food-related learning in rats. Psychopharmacology 184:87–94

    PubMed  CAS  Google Scholar 

  • Sharf R, Lee DY, Ranaldi R (2005) Microinjections of SCH 23390 in the ventral tegmental area reduce operant responding under a progressive ratio schedule of food reinforcement in rats. Brain Res 1033:179–185

    PubMed  CAS  Google Scholar 

  • Sooksawate T, Isa T (2006) Properties of cholinergic responses in neurons in the inter-mediate gray layer of the rat superior colliculus. Eur J Neurosci 24:3096–3108

    PubMed  Google Scholar 

  • Steidl S, Yeomans JS (2009) M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J Pharmacol Exp Ther 328:263–275

    PubMed  CAS  Google Scholar 

  • Steininger T, Rye D, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat: retrograde tracing studies. J Comp Neurol 22:515–543

    Google Scholar 

  • Steriade M (1993) Cholinergic blockage of network- and intrinsically generated slow oscillations promotes waking and REM sleep activity patterns in thalamic and cortical neurons. Prog Brain Res 98:345–355

    PubMed  CAS  Google Scholar 

  • Steriade M, Contreras D (1995) Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J Neurosci 15:623–642

    PubMed  CAS  Google Scholar 

  • Steriade M, McCarley RW (2005) Brain control of waking and sleep, 2nd edn. Klüver-Plenum, New York, NY

    Google Scholar 

  • Swerdlow NR, Geyer MA (1993) Prepulse inhibition of acoustic startle in rats after lesions of the pedunculopontine tegmental nucleus. Behav Neurosci 107:104–117

    PubMed  CAS  Google Scholar 

  • Takahashi K, Koyama Y, Kayama Y, Yamamoto M (2002) Effects of orexin on the laterodorsal tegmental neurons. Psychiatry Clin Neurosci 56:335–336

    PubMed  CAS  Google Scholar 

  • Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and non-cholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371:345–361

    PubMed  CAS  Google Scholar 

  • Takakusaki K, Saitoh K, Harada H, Okumura T, Sakamoto T (2004) Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 124:207–220

    PubMed  CAS  Google Scholar 

  • Takeuchi J, Fulton J, Jia ZP, Abramov-Newerly W, Jamot L, Sud M, Coward D, Ralph M, Roder J, Yeomans J (2002) Increased drinking in mutant mice with truncated M5 muscarinic receptor genes. Pharmacol Biochem Behav 72:117–123

    PubMed  CAS  Google Scholar 

  • Tehovnik EJ, Yeomans JS (1986) Two converging brainstem pathways mediating circling behavior. Brain Res 385:329–342

    PubMed  CAS  Google Scholar 

  • Thannickal TC, Nienhuis R, Siegel JM (2001) Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 32:993–998

    Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C, Nomikos GG (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 12:1410–1412

    Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 43:31–36

    Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res 21:30–46

    PubMed  CAS  Google Scholar 

  • Wang H, Liang S, Burgdorf J, Wess J, Yeomans J (2008) Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. PLoS One 3:1–12

    CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 87:7050–7054

    PubMed  CAS  Google Scholar 

  • Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie DL, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors Channels 9:279–290

    PubMed  CAS  Google Scholar 

  • Woolf NJ (1991) Cholinergic systems in the mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    PubMed  CAS  Google Scholar 

  • Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16:603–637

    PubMed  CAS  Google Scholar 

  • Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713

    PubMed  CAS  Google Scholar 

  • Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK et al (2009) The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150:2153–2160

    PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spangnola BV, Wolfe BB (1993) Development of antisera for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 43:149–157

    PubMed  CAS  Google Scholar 

  • Yeomans JS, Kofman O, McFarlane V (1985) Cholinergic involvement in lateral hypothalamic rewarding brain stimulation. Brain Res 329:19–26

    PubMed  CAS  Google Scholar 

  • Yeomans JS, Mathur A, Tampakeras M (1993) Rewarding brain stimulation: role of tegmental cholinergic neurons that activate dopamine neurons. Behav Neurosci 107:1077–1087

    PubMed  CAS  Google Scholar 

  • Yeomans JS, Forster G, Blaha C (2001) M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci 68:2449–2456

    PubMed  CAS  Google Scholar 

  • Yeomans JS, Lee J, Yeomans MH, Steidl S, Li L (2006) Midbrain pathways for prepulse inhibition and startle activation in rat. Neuroscience 142:921–929

    PubMed  CAS  Google Scholar 

  • Yeomans JS, Bosch D, Alves N, Daros A, Ure RJ, Schmid S (2010) GABA receptors and prepulse inhibition of acoustic startle in mice and rats. Eur J Neurosci 31:2053–2061

    PubMed  Google Scholar 

  • Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Tom Curry, Stephan Steidl, and Sabrina Nawaz for help preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Yeomans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeomans, J.S. (2012). Muscarinic Receptors in Brain Stem and Mesopontine Cholinergic Arousal Functions. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_11

Download citation

Publish with us

Policies and ethics