Skip to main content

From Corecursive Algebras to Corecursive Monads

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6859))

Included in the following conference series:

  • 609 Accesses

Abstract

An algebra is called corecursive if from every coalgebra a unique coalgebra-to-algebra homomorphism exists into it. We prove that free corecursive algebras are obtained as a coproduct of the final coalgebra (considered as an algebra) and with free algebras. The monad of free corecursive algebras is proved to be the free corecursive monad, where the concept of corecursive monad is a generalization of Elgot’s iterative monads, analogous to corecursive algebras generalizing completely iterative algebras. We also characterize the Eilenberg-Moore algebras for the free corecursive monad and call them Bloom algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: A coalgebraic view. Theoret. Comput. Sci. 300, 1–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math.  Univ.  Carolinæ 15, 589–602 (1974)

    MATH  Google Scholar 

  3. Adámek, J., Milius, S., Velebil, J.: Elgot theories: a new perspective of the equational properties of iteration. Math. Structures Comput. Sci. (to appear)

    Google Scholar 

  4. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. 2(5:4), 31 (2006)

    Google Scholar 

  5. Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Structures Comput. Sci. 16(6), 1085–1131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  7. America, P., Rutten, J.: Solving reflexive domain equations in a category of complete metric. J. Comput. System Sci. 39, 343–375 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloom, S.L., Ésik, Z.: Iteration Theories: the equational logic of iterative processes. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  9. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform. and Comput. 204, 437–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capretta, V., Uustalu, T., Vene, V.: Corecursive algebras: A study of general structured corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 84–100. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Cockett, R., Fukushima, T.: About charity. Yellow Series Report 92/480/18, Dept. of Computer Science University of Calgary (1992)

    Google Scholar 

  12. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Rose, H.E., Sheperdson, J.C. (eds.) Logic Colloquium ’73. North-Holland Publishers, Amsterdam (1975)

    Google Scholar 

  13. Elgot, C.C., Bloom, S.L., Tindell, R.: On the algebraic structure of rooted trees. J. Comput. System Sci. 16, 361–399 (1978)

    Article  MathSciNet  Google Scholar 

  14. Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Comput. 196, 1–41 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Osius, G.: Categorical set theory: a characterization of the category of set. J. Pure Appl. Algebra 4, 79–119 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  17. Trnková, V., Adámek, J., Koubek, V., Reiterman, J.: Free algebras, input processes and free monads. Comment. Math. Univ. Carolinæ 16, 339–351 (1975)

    MATH  Google Scholar 

  18. Turner, D.A.: Total functional programing. J. Univ. Comput. Sci. 10(7), 751–768 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adámek, J., Haddadi, M., Milius, S. (2011). From Corecursive Algebras to Corecursive Monads. In: Corradini, A., Klin, B., Cîrstea, C. (eds) Algebra and Coalgebra in Computer Science. CALCO 2011. Lecture Notes in Computer Science, vol 6859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22944-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22944-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22943-5

  • Online ISBN: 978-3-642-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics