Skip to main content

Hybrid Correlation and Causal Feature Selection for Ensemble Classifiers

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 373))

Abstract

PC and TPDA algorithms are robust and well known prototype algorithms, incorporating constraint-based approaches for causal discovery. However, both algorithms cannot scale up to deal with high dimensional data, that is more than few hundred features. This chapter presents hybrid correlation and causal feature selection for ensemble classifiers to deal with this problem. Redundant features are removed by correlation-based feature selection and then irrelevant features are eliminated by causal feature selection. The number of eliminated features, accuracy, the area under the receiver operating characteristic curve (AUC) and false negative rate (FNR) of proposed algorithms are compared with correlation-based feature selection (FCBF and CFS) and causal based feature selection algorithms (PC, TPDA, GS, IAMB).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliferis, C.F., Tsamardinos, I., Statnikov, A.: HITON, A novel Markov blanket algorithm for optimal variable selection. In: Proc. American Medical Iinformation Association Annual Symp., Washington DC, pp. 21–25 (2003)

    Google Scholar 

  2. Almuallim, H., Dietterich, T.G.: Learning with many irrelevant features. In: Proc. the 9th Natl. Conf. Artif. Intell., San Jose, CA, pp. 547–552. AAAI Press, New York (1991)

    Google Scholar 

  3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Brown, L.E., Tsamardinos, I.: Markov blanket-based variable selection. Technical Report DSL TR-08-01 (2008)

    Google Scholar 

  6. Cheng, J., Bell, D.A., Liu, W.: Learning belief networks from data: An information theory based approach. In: Golshani, F., Makki, K. (eds.) Proc. the 6th Int. Conf. Inf. and Knowledge Management, Las Vegas, NV, pp. 325–331. ACM, New York (1997)

    Google Scholar 

  7. Friedman, N., Nachman, I., Peer, D.: Learning of Bayesian network structure from massive datasets: The sparse candidate algorithm. In: Laskey, K., Prade, H. (eds.) Proc. the 15th Conf. Uncertainty in Artif. Intell., Stockholm, Sweden, pp. 206–215. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  8. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: Langley, P. (ed.) Proc. the 17th Int. Conf. Machine Learning, Stanford, CA, pp. 359–366. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Duangsoithong, R., Windeatt, T.: Relevance and redundancy analysis for ensemble classifiers. In: Perner, P. (ed.) MLDM 2009. LNCS, vol. 5632, pp. 206–220. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Guyon, I., Aliferis, C., Elisseeff, A.: Causal feature selection. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 63–86. Chapman & Hall/CRC Press, Boca Raton (2007)

    Chapter  Google Scholar 

  11. Guyon, I.: Causality workbench (2008), http://www.causality.inf.ethz.ch/home.php

  12. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33, 25–41 (2000)

    Article  Google Scholar 

  13. Liu, F., Tian, F., Zhu, Q.: Bayesian network structure ensemble learning. In: Alhajj, R., Gao, H., Li, X., Li, J., Zaïane, O.R. (eds.) ADMA 2007. LNCS (LNAI), vol. 4632, pp. 454–465. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Liu, F., Tian, F., Zhu, Q.: Ensembling Bayesian network structure learning on limited data. In: Silva, M.J., Laender, A.H.F., Baeza-Yates, R.A., McGuinness, D.L., Olstad, B., Olsen, Ø.H., Falcão, A.O. (eds.) Proc. of the 16th ACM Conf. Inf. and Knowledge Management, Lisbon, Portugal, pp. 927–930. ACM, New York (2007)

    Google Scholar 

  15. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowledge and Data Engineering 17, 491–502 (2005)

    Article  Google Scholar 

  16. Margaritis, D., Thrun, S.: Bayesian network induction via local neighborhoods. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) Proc. Neural Inf. Proc. Conf., Denver, CO., pp. 505–511. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Pudil, P., Novovicova, J., Kittler, J.: Floating Search Methods in Feature Selection. Pattern Recognition Letters 15, 1119–1125 (1994)

    Article  Google Scholar 

  18. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507–2517 (2007)

    Article  Google Scholar 

  19. Spirtes, P., Glymour, C., Scheines, R.: Causation, prediction, and search. Springer, New York (1993)

    MATH  Google Scholar 

  20. Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Time and sample efficient discovery of Markov blankets and direct causal relations. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) Proc. the 9th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Washington DC, pp. 673–678. ACM, New York (2003)

    Chapter  Google Scholar 

  21. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65, 31–78 (2006)

    Article  Google Scholar 

  22. Wang, M., Chen, Z., Cloutier, S.: A hybrid Bayesian network learning method for constructing gene networks. J. Comp. Biol. and Chem. 31, 361–372 (2007)

    Article  MATH  Google Scholar 

  23. Windeatt, T.: Accuracy/diversity and ensemble MLP classifier design. IEEE Trans. Neural Networks 17, 1194–1211 (2006)

    Article  Google Scholar 

  24. Windeatt, T.: Ensemble MLP classifier design. In: Lakhmi, J.C., Sato-Ilic, M., Virvou, M., Tsihrintzis, G.A., Balas, V.E., Abeynayake, C. (eds.) Computational Intelligence Paradigms. SCI, vol. 137, pp. 133–147. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  26. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Machine Learning Research 5, 1205–1224 (2004)

    MathSciNet  Google Scholar 

  27. Zhang, H., Sun, G.: Feature selection using tabu search. Pattern Recognition 35, 701–711 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duangsoithong, R., Windeatt, T. (2011). Hybrid Correlation and Causal Feature Selection for Ensemble Classifiers. In: Okun, O., Valentini, G., Re, M. (eds) Ensembles in Machine Learning Applications. Studies in Computational Intelligence, vol 373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22910-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22910-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22909-1

  • Online ISBN: 978-3-642-22910-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics