Skip to main content

A Linear Time Algorithm for Error-Corrected Reconciliation of Unrooted Gene Trees

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6674))

Included in the following conference series:

Abstract

Evolutionary methods are increasingly challenged by the fast growing resources of genomic sequence information. Fundamental evolutionary events, like gene duplication, loss, and deep coalescence, account more then ever for incongruence between gene trees and the actual species tree. Gene tree reconciliation is addressing this fundamental problem by invoking the minimum number of gene-duplication and losses that reconcile a gene tree with a species tree. Despite its promise, gene tree reconciliation assumes the gene trees to be correctly rooted and free of error, which severely limits its application in practice. Here we present a novel linear time algorithm for error-corrected gene tree reconciliation of unrooted gene trees. Furthermore, in an empirical study on yeast genomes we successfully demonstrate the ability of our algorithm to (i) reconcile (cure) error-prone gene trees, and (ii) to improve on more advanced evolutionary applications that are based on gene tree reconciliation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the gene-duplication problem: A Θ(n) speed-up for the local search. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 238–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Bansal, M.S., Eulenstein, O.: The multiple gene duplication problem revisited. Bioinformatics 24(13), i132–i138 (2008)

    Article  Google Scholar 

  3. Behzadi, B., Vingron, M.: Reconstructing domain compositions of ancestral multi-domain proteins. In: Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205, pp. 1–10. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H., Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theoretical Computer Science 347(1-2), 36–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–447 (2000)

    Article  Google Scholar 

  7. Durand, D., Halldorsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eulenstein, O., Huzurbazar, S., Liberles, D.A.: Reconciling phylogenetic trees. In: Dittmar, Liberles (eds.) Evolution After Gene Duplication. Wiley, Chichester (2010)

    Google Scholar 

  9. Eulenstein, O., Mirkin, B., Vingron, M.: Duplication-based measures of difference between gene and species trees. J. Comput. Biol. 5(1), 135–148 (1998)

    Article  Google Scholar 

  10. Fellows, M.R., Hallett, M.T., Stege, U.: On the multiple gene duplication problem. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 347–356. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28(2), 132–163 (1979)

    Article  Google Scholar 

  12. Górecki, P., Tiuryn, J.: Inferring phylogeny from whole genomes. Bioinformatics 23(2), e116–e122 (2007)

    Article  Google Scholar 

  13. Górecki, P., Tiuryn, J.: Urec: a system for unrooted reconciliation. Bioinformatics 23(4), 511–512 (2007)

    Article  Google Scholar 

  14. Graur, D., Li, W.-H.: Fundamentals of Molecular Evolution. Sinauer Associates, 2 sub edition (2000)

    Google Scholar 

  15. Guigó, R., Muchnik, I.B., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution 6(2), 189–213 (1996)

    Article  Google Scholar 

  16. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biology 8(7), R141+ (2007)

    Article  Google Scholar 

  17. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM Journal on Computing 30(3), 729–752 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirkin, B., Muchnik, I.B., Smith, T.F.: A biologically consistent model for comparing molecular phylogenies. J. Comput. Biol. 2(4), 493–507 (1995)

    Article  Google Scholar 

  19. Notredame, C., Higgins, D.G., Jaap, H.: T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)

    Article  Google Scholar 

  20. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43(1), 58–77 (1994)

    Google Scholar 

  21. Page, R.D.M.: GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14(9), 819–820 (1998)

    Article  Google Scholar 

  22. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evolutionary Biology 7(Suppl 1), S3 (2007)

    Article  Google Scholar 

  23. Sherman, D.J., Martin, T., Nikolski, M., Cayla, C., Souciet, J.-L., Durrens, P.: Gènolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Research 37(suppl 1), D550–D554 (2009)

    Article  Google Scholar 

  24. Wehe, A., Bansal, M.S., Burleigh, G.J., Eulenstein, O.: DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13), 1540–1541 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Górecki, P., Eulenstein, O. (2011). A Linear Time Algorithm for Error-Corrected Reconciliation of Unrooted Gene Trees. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics