Skip to main content

Abstract

The genus Quercus (the oaks) is an important tree taxon and we review here several aspects of its biology relevant to domestication and summarize progress to date in breeding and improvement. The oaks are not very far along the domestication route and so wild populations are still important in the establishment and development of managed populations. We consider several aspects of oak ecology and genetics along with the challenging topic of oak taxonomy since these all influence gene pool management. We then turn to describe the successes already made in the areas of oak breeding, especially with regards to marker-assisted breeding and the development of molecular markers, linkage maps, and QTL studies. We also consider several new initiatives in oak genomics that will likely change the rate of progress in the domestication of this important group of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW (2006) Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res 6:702–715

    PubMed  Google Scholar 

  • Aas G (1991) Crossing experiments on Pedunculate and Sessile Oak (Quercus robur L. and Q. petraea (Matt.) Liebl.). Allgem For Jagdzeit 162:141–145

    Google Scholar 

  • Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56

    PubMed  CAS  Google Scholar 

  • Abe Y, Melika G, Stone GN (2007) The diversity and phylogeography of cynipid gallwasps (Hymenoptera: Cynipidae) of the oriental and eastern Palearctic regions, and their associated communities. Oriental Insects 41:169–212

    Google Scholar 

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238

    PubMed  Google Scholar 

  • Abrams MD (1992) Fire and the development of oak forests. Bioscience 42:346–353

    Google Scholar 

  • Abrams MD (1994) Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies. Tree Physiol 14:833–842

    PubMed  Google Scholar 

  • Abrams MD (2003) Where has all the white oak gone? Bioscience 53:927–939

    Google Scholar 

  • Abrams MD, Nowacki GJ (1992) Historical variation in fire, oak recruitment, and post-logging accelerated succession in central Pennsylvania. Bull Torr Bot Club 119:19–28

    Google Scholar 

  • Adams JP, Rousseau RJ, Adams JC (2007) Genetic performance and maximizing genetic gain through direct and indirect selection in cherrybark oak. Silvae Genet 56:80–87

    Google Scholar 

  • Ainsworth EA, Tranel PJ, Drake BG, Long SP (2003) The clonal structure of Quercus geminata revealed by conserved microsatellite loci. Mol Ecol 12:527–532

    PubMed  CAS  Google Scholar 

  • Aldrich PR (2008) Molecular mapping and breeding in forest trees. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics, vol 2, Molecular breeding. Science Publications, Enfield, NH, pp 261–354

    Google Scholar 

  • Aldrich PR, Michler CH, Sun WL, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae:Quercus rubra). Mol Ecol Notes 2:472–474

    CAS  Google Scholar 

  • Aldrich PR, Jagtap M, Michler CH, Romero-Severson J (2003a) Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genet 52:176–179

    Google Scholar 

  • Aldrich PR, Parker GR, Michler CH, Romero-Severson J (2003b) Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest. Can J Forest Res 33:2228–2237

    Google Scholar 

  • Aldrich PR, Glaubitz JC, Parker GR, Rhodes OE, Michler CH (2005a) Genetic structure inside a declining red oak community in old-growth forest. J Hered 96:627–634

    PubMed  CAS  Google Scholar 

  • Aldrich PR, Parker GR, Romero-Severson J, Michler CH (2005b) Confirmation of oak recruitment failure in Indiana old-growth forest: 75 years of data. Forest Sci 51:406–416

    Google Scholar 

  • Alvarez R, Ordas RJ (2007) Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell Tissue Organ Cult 91:45–52

    CAS  Google Scholar 

  • Alvarez R, Alonso P, Cortizo M, Celestino C, Hernandez I, Toribio M, Ordas R (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223

    PubMed  CAS  Google Scholar 

  • Appel DN (1995) The oak wilt enigma – perspectives from the Texas epidemic. Annu Rev Phytopathol 33:103–118

    PubMed  CAS  Google Scholar 

  • Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253

    Google Scholar 

  • Bacilieri R, Ducousso A, Kremer A (1996a) Mating system and directional gene flow in a mixed oak stand. Evolution 50:900–908

    Google Scholar 

  • Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996b) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908

    Google Scholar 

  • Bakker EG, Van Dam BC, Van Eck HJ, Jacobsen E (2001) The description of clones of Quercus robur L. and Q. petraea (Matt.) Liebl. with microsatellites and AFLP in an ancient woodland. Plant Biol 3:616–621

    CAS  Google Scholar 

  • Baranec T, Murin A (2003) Karyogical analyses of some Korean woody plants. Biologia 58:797–804

    Google Scholar 

  • Barreneche T, Bahrman N, Kremer A (1996) Two dimensional gel electrophoresis confirms the low level of genetic differentiation between Quercus robur L. and Quercuspetraea (Matt.) Liebl. Forest Genet 3:89–92

    Google Scholar 

  • Barreneche T, Bodenes C, Lexer C, Trontin JF et al (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor Appl Genet 97:1090–1103

    CAS  Google Scholar 

  • Barreneche T, Casasoli M, Russell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108:558–566

    PubMed  CAS  Google Scholar 

  • Becker M, Levy L (1990) Le point sur l’e´cologie compare´e du cheˆne sessile (Quercus petraea (Matt.) Liebl.) et le cheˆne pe´doncule´ (Quercus robur L.). Rev Forest Fr 42:148–154

    Google Scholar 

  • Bellarosa R, Simeone MC, Papini A, Schirone B (2005) Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus spp. Mol Phylogenet Evol 34:355–370

    PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms – progress, problems and prospects. Ann Bot 95:45–90

    PubMed  CAS  Google Scholar 

  • Berg EE, Hamrick JL (1993) Regional genetic variation in Turkey Oak, Quercus laevis Walt. Can J Forest Res 23:1270–1274

    Google Scholar 

  • Blue MP, Jensen RJ (1988) Positional and seasonal variation in oak (Quercus; Fagaceae) leaf morphology. Am J Bot 75:939–947

    Google Scholar 

  • Bodenes C, Laigret F, Kermer A (1996) Inheritance and molecular variations of PCR-SSCP fragments in pedunculate oak (Quercus robur L). Theor Appl Genet 93:348–354

    CAS  Google Scholar 

  • Bodenes C, Joandet S, Laigret F, Kremer A (1997a) Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. Heredity 78:433–444

    CAS  Google Scholar 

  • Bodenes C, Labbe T, Pradere S, Kremer A (1997b) General vs. local differentiation between two closely related white oak species. Mol Ecol 6:713–724

    Google Scholar 

  • Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16:159–166

    PubMed  CAS  Google Scholar 

  • Bogdan S, Katicic-Trupcevic I, Kajba D (2004) Genetic variation in growth traits in a Quercus robur L. open-pollinated progeny test of the Slavonian provenance. Silvae Genet 53:198–201

    Google Scholar 

  • Bostad PV, Reich P, Lee T (2003) Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol 23:969–976

    PubMed  Google Scholar 

  • Boucher DH (1981) Seed predation by mammals and forest dominance by Quercus oleoides, a tropical lowland oak. Oecologia 49:409–414

    Google Scholar 

  • Bowyer JL, Shmulsky R, Haygreen JG (2007) Forest products and wood science: an introduction, 5th edn. Wiley-Blackwell, New Jersey, USA

    Google Scholar 

  • Bradshaw HD Jr, Stettler RF (1993) Molecular genetics of growth and development in Populus. I. Triplody in hybrid poplars. Theor Appl Genet 86:301–307

    Google Scholar 

  • Brendel O, Le Thiec D, Scotti-Saintagne C, Bodenes C, Kremer A, Guehl JM (2008) Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet Genomes 4:263–278

    Google Scholar 

  • Britton NL, Brown A (1913) An illustrated flora of the northern United States, Canada and the British possessions, vol 1. C. Scribner’s Sons, New York, USA, pp 617–622

    Google Scholar 

  • Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ 29:2205–2215

    PubMed  CAS  Google Scholar 

  • Bruschi P, Grossoni P, Bussotti F (2003) Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees Struct Funct 17:164–172

    Google Scholar 

  • Bueno MA, Gomez A, Boscaiu M, Manzanera JA, Vicente O (1997) Stress-induced formation of haploid plants through anther culture in cork oak (Quercus suber). Physiol Plant 99:335–341

    CAS  Google Scholar 

  • Bueno MA, Gomez A, Sepulveda F, Segui JM, Testillano PS, Manzanera JA, Risueno MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160:953–960

    PubMed  CAS  Google Scholar 

  • Burger WC (1975) The species concept in Quercus. Taxon 24:45–50

    Google Scholar 

  • Burns RM, Honkala BH, tech. coords (1990) Silvics of North America: 2. Hardwoods, vol 654, Agriculture handbook. US Department of Agriculture, Forest Service, Washington DC, USA

    Google Scholar 

  • Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533–546

    PubMed  CAS  Google Scholar 

  • Cavender-Bares J, Holbrook NM (2001) Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with, contrasting habitats. Plant Cell Environ 24:1243–1256

    Google Scholar 

  • Cavender-Bares J, Pahlich A (2009) Molecular, morphological and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). Am J Bot 96:1690–1702

    PubMed  Google Scholar 

  • Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004a) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163:823–843

    PubMed  CAS  Google Scholar 

  • Cavender-Bares J, Gonzalez-Rodriguez A, Pahlich A, Koehler K, and Deacon N (2011) Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone Journal of Biogeography 38:962–981

    Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004b) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662

    Google Scholar 

  • Cavender-Bares J, Sack L, Savage J (2007) Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol 27:611–620

    PubMed  Google Scholar 

  • Cavender-Bares J, Izzo A, Robinson R, Lovelock C (2009) Changes in ectomycorrhizal fungal assemblages on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza 19:133–142

    PubMed  CAS  Google Scholar 

  • Cecich RA, Sullivan NH (1999) Influence of weather at time of pollination on acorn production of Quercus alba and Quercus velutina. Can J Forest Res 29:1817–1823

    Google Scholar 

  • Cervera MT, Remington D, Frigerio JM, Storme V, Ivens B, Boerjan W, Plomion C (2000) Improved AFLP analysis of tree species. Can J Forest Res 30:1608–1616

    CAS  Google Scholar 

  • Chalupa V (2000) In vitro propagation of mature trees of pedunculate oak (Quercus robur L.). J Forest Sci 46:537–542

    CAS  Google Scholar 

  • Chokchaichamnankit P, Chulalaksananukul W, Phengklai C, Anamthawat-Jonsson K (2008) Species and genetic diversity of Fagaceae in northern Thailand based on ISSR markers. J Trop Forest Sci 20:8–18

    Google Scholar 

  • Ciesla WM (2002) Non-wood forest products from temperate broad-leaves trees, vol 15, Non-wood forest products. Food and Agriculture Organization, Rome, Italy, p 125

    Google Scholar 

  • Coart E, Lamote V, De Loose M, Van Bockstaele E, Lootens P, Roldan-Ruiz I (2002) AFLP markers demonstrate local genetic differentiation between two indigenous oak species [Quercus robur L. and Quercus petraea (Matt.) Liebl] in Flemish populations. Theor Appl Genet 105:431–439

    PubMed  CAS  Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    PubMed  Google Scholar 

  • Coelho AC, Horta M, Neves D, Cravador A (2006) Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi. Physiol Mol Plant Pathol 69:62–72

    CAS  Google Scholar 

  • Cooke DEL, Jung T, Williams NA, Schubert R, Bahnweg G, Osswald W, Duncan JM (1999) Molecular evidence supports Phytophthora quercina as a distinct species. Mycol Res 103:799–804

    CAS  Google Scholar 

  • Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae Hymenoptera, why and how? Am Midl Nat 110:225–234

    Google Scholar 

  • Corredoira E, Valladares S, Viettez AM (2006) Morphohistological analysis of the origin and development of somatic embryos from leaves of mature Quercus robur. In Vitro Cell Dev Biol Plant 42:525–533

    Google Scholar 

  • Cosimo SM, Papini A, Vessella F, Bellarosa R, Spada F, Schirone B (2009) Multiple genome relationships and a complex biogeographic history in the eastern range of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA variation. Caryologia 62:236–252

    Google Scholar 

  • Cottam WP, Tucker JM, Santamour FS (1982) Oak hybridization at the University of Utah. State Arboretum of Utah Publication No 1, Salt Lake City, UT, USA

    Google Scholar 

  • Cottrell JE, Munro RC, Tabbener HE, Gillies ACM, Forrest GI, Deans JD, Lowe AJ (2002) Distribution of chloroplast DNA variation in British oaks (Quercus robur and Q. petraea):the influence of postglacial colonisation and human management. Forest Ecol Manag 156:181–195

    Google Scholar 

  • Craft KJ, Ashley MV (2006) Population differentiation among three species of white oak in northeastern Illinois. Canadian Journal of Forest Research 36:206–215

    Google Scholar 

  • Craft KJ, Owens JD, Ashley MV (2007) Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites. Forensic Sci Int 165:64–70

    PubMed  CAS  Google Scholar 

  • Craft KJ, Ashley MV (2007) Landscape genetic structure of bur oak (Quercus macrocarpa) savannas in Illinois. Forest Ecology and Management 239:13–20

    Google Scholar 

  • Curtu AL, Gailing O, Finkeldey R (2007) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol Biol 7:218

    PubMed  Google Scholar 

  • Cvikrova M, Mala J, Hrubcova M, Eder J, Zon J, Machackova I (2003) Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis. Plant Physiol Biochem 41:251–259

    CAS  Google Scholar 

  • Daghlian CP, Crepet WL (1983) Oak catkins, leaves and fruits from the Oligocene Catahoula formation and their evolutionary significance. Am J Bot 70:639–649

    Google Scholar 

  • Deguilloux MF, Pemonge MH, Petit RJ (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc R Soc Lond B Biol Sci 269:1039–1046

    CAS  Google Scholar 

  • Deguilloux MF, Dumolin-Lapegue S, Gielly L, Grivet D, Petit RJ (2003a) A set of primers for the amplification of chloroplast microsatellites in Quercus. Mol Ecol Notes 3:24–27

    CAS  Google Scholar 

  • Deguilloux MF, Pemonge MH, Bertel L, Kremer A, Petit RJ (2003b) Checking the geographical origin of oak wood: molecular and statistical tools. Mol Ecol 12:1629–1636

    PubMed  CAS  Google Scholar 

  • Deguilloux MF, Pemonge MH, Petit RJ (2004) DNA-based control of oak wood geographic origin in the context of the cooperage industry. Ann Forest Sci 61:97–104

    CAS  Google Scholar 

  • D’Emerico S, Bianco P, Medagli P, Schirone B (1995) Karyotype analysis in Quercus spp. (Fagaceae). Silvae Genet 44:66–70

    Google Scholar 

  • D’Emerico S, Paciolla C, Tommasi F (2000) Contribution to the karyomorphology of some species of the genus Quercus. Silvae Genet 49:243–245

    Google Scholar 

  • de Heredia UL, Carrion JS, Jimenez P, Collada P, Gil L (2007) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. Journal of Biogeography 34:1505–1517

    Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    PubMed  CAS  Google Scholar 

  • Derory J, Leger P, Garcia V, Schaeffer J, Hauser MT, Salin F, Luschnig C, Plomion C, Glossl J, Kremer A (2006) Transcriptome analysis of bud burst in sessile oak (Quercuspetraea). New Phytol 170:723–738

    PubMed  CAS  Google Scholar 

  • Dey DC, Jacobs D, McNabb K, Miller G, Baldwin V, Foster G (2008) Artificial regeneration of major oak (Quercus) species in the eastern United States – a review of the literature. Forest Sci 54:77–106

    Google Scholar 

  • Dickie IA, Fitzjohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270

    PubMed  CAS  Google Scholar 

  • Dickie IA, Koide RT, Fayish AC (2001) Vesicular-arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol 151:257–264

    Google Scholar 

  • Dickie IA, Schnitzer SA, Reich PB, Hobbie SE (2007) Is oak establishment in old-fields and savanna openings context dependent? J Ecol 95:309–320

    Google Scholar 

  • Dodd RS, Kashani N (2003) Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae). Theor Appl Genet 107:884–892

    PubMed  Google Scholar 

  • Doussot F, De Jeso B, Quideau S, Pardon P (2002) Extractives content in cooperage oak wood during natural seasoning and toasting; Influence of tree species, geographic location, and single-tree effects. J Agric Food Chem 50:5955–5961

    PubMed  CAS  Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627

    Google Scholar 

  • Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT)(N) microsatellites in the Bur Oak, Quercus macrocarpa. Theor Appl Genet 91:137–141

    CAS  Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    CAS  Google Scholar 

  • Dumolin-Lapegue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487

    PubMed  CAS  Google Scholar 

  • Dumolin-Lapègue S, Pemonge M-H, Gielly L, Taberlet P, Petit RJ (2002) Amplification of oak DNA from ancient and modern wood. Mol Ecol 8:2137–2140

    Google Scholar 

  • Dzialuk A, Chybicki I, Welc M, Sliwinska E, Burczyk J (2007) Presence of triploids among oak species. Ann Bot 99:959–964

    PubMed  Google Scholar 

  • Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345

    Google Scholar 

  • Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB (2006) Plant cell wall biosynthesis: Genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol J 4:145–167

    PubMed  CAS  Google Scholar 

  • Favre JM, Brown S (1996) A flow cytometric evaluation of the nuclear DNA content and GC percent in genomes of European oak species. Ann Forest Sci 53:915–917

    Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296

    PubMed  CAS  Google Scholar 

  • Fernandez JF, Sork VL (2005) Mating patterns of a subdivided population of the Andean oak (Quercus humboldtii Bonpl., Fagaceae). J Hered 96:635–643

    Google Scholar 

  • Fernández-Manjarrés JF, Idol J, Sork VL (2006) Mating patterns of Black Oak Quercus velutina (Fagaceae) in a Missouri oak-hickory forest. J Hered 97:451–455

    PubMed  Google Scholar 

  • Feuillat F, Keller R (1997) Variability of oak wood (Quercus robur L., Quercus petraea Liebl.) anatomy relating to cask properties. Am J Enol Vitic 48:502–508

    Google Scholar 

  • Fichtner EJ, Lynch SC, Rizzo DM (2007) Detection, distribution, sporulation, and survival of Phytophthora ramorum in a California redwood-tanoak forest soil. Phytopathology 97:1366–1375

    PubMed  CAS  Google Scholar 

  • Fladung M, Ziegenhagen B (1998) M13 DNA fingerprinting can be used in studies on phenotypic reversions of forest tree mutants. Trees Struct Funct 12:310–314

    Google Scholar 

  • Folzer H, Dat JF, Capelli N, Rieffel D, Badot PM (2006) Response of sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Tree Physiol 26:759–766

    PubMed  CAS  Google Scholar 

  • Forkner RE, Marquis RJ (2004) Uneven-aged and even-aged logging alter foliar phenolics of oak trees remaining in forested habitat matrix. Forest Ecol Manag 199:21–37

    Google Scholar 

  • Forkner RE, Marquis RJ, Lill JT (2004) Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol Entomol 29:174–187

    Google Scholar 

  • Fowler ME (1953) Oak wilt: its distribution and control. Plant Dis Rep 37:104–109

    Google Scholar 

  • Frettinger P, Herrmann S, Lapeyrie F, Oelmuller R, Buscot F (2006) Differential expression of two class III chitinases in two types of roots of Quercus robur during pre-mycorrhizal interactions with Piloderma croceum. Mycorrhiza 16:219–223

    PubMed  CAS  Google Scholar 

  • Frettinger P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmuller R, Martin F, Buscot F (2007) Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. Planta 225:331–340

    PubMed  CAS  Google Scholar 

  • Gailing O (2008) QTL analysis of leaf morphological characters in a Quercus robur full-sib family (Q-robur × Q-robur ssp slavonica). Plant Biol 10:624–634

    PubMed  CAS  Google Scholar 

  • Gailing O, Kremer A, Steiner W, Hattemer HH, Finkeldey R (2005) Results on quantitative trait loci for flushing date in oaks can be transferred to different segregating progenies. Plant Biol 7:516–525

    PubMed  CAS  Google Scholar 

  • Gailing O, Langenfeld-Heyser R, Polle A, Finkeldey R (2008) Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny:implications for the adaptation to changing environments. Global Change Biol 14:1934–1946

    Google Scholar 

  • Garcia-Martin G, Manzanera JA, Gonzalez-Benito ME (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Organ Cult 80:171–177

    CAS  Google Scholar 

  • Gil B, Pastoriza E, Ballester A, Sanchez C (2003) Isolation and characterization of a cDNA from Quercus robur differentially expressed in juvenile-like and mature shoots. Tree Physiol 23:633–640

    PubMed  CAS  Google Scholar 

  • Giomaro G, Sisti D, Zambonelli A, Amicucci A, Cecchini M, Comandini O, Stocchi V (2002) Comparative study and molecular characterization of ectomycorrhizas in Tilia americana and Quercus pubescens with Tuber brumale. FEMS Microbiol Lett 216:9–14

    PubMed  CAS  Google Scholar 

  • Gomory DA (2000) Gene coding for a non-specific NAD-dependent dehydrogenase shows a strong differentiation between Quercus robur and Quercus petraea. Forest Genet 7:167–170

    Google Scholar 

  • Gonzalez-Martinez SC, Krutovsky KV, Neale DB (2006) Forest tree population genomics and adaptive evolution. New Phytol 170:227–238

    PubMed  Google Scholar 

  • Gonzalez-Rodriguez A, Arias DM, Oyama K (2005) Genetic variation and differentiation of populations within the Quercus affinis-Quercus laurina (Fagaceae) complex analyzed with RAPD markers. Canadian Journal of Botany-Revue Canadienne De Botanique 83:155–162

    CAS  Google Scholar 

  • Gonzalez-Rodriguez A, Bain JF, Golden JL, Oyama K (2004a) Chloroplast DNA variation in the Quercus affinis-Q-laurina complex in Mexico: geographical structure and associations with nuclear and morphological variation. Molecular Ecology 13:3467–3476

    PubMed  CAS  Google Scholar 

  • González-Rodríguez A, Arias DM, Valencia S, and Oyama K (2004b) Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. American Journal of Botany 91:401–409

    PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Grivet D, Sork VL, Westfall RD, Davis FW (2008) Conserving the evolutionary potential of California valley oak (Quercus lobata Nee): a multivariate genetic approach to conservation planning. Molecular Ecology 17:139–156

    PubMed  Google Scholar 

  • Guttman SI, Weigt LA (1989) Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America. Can J Bot 67:339–351

    Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95–124

    Google Scholar 

  • Hennig W (1979) Phylogenetic systematics (3 rd edition of 1966 book). University of Illinois Press, Urbana IL, USA

    Google Scholar 

  • Hernandez I, Celestino C, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764

    PubMed  CAS  Google Scholar 

  • Herrmann S, Buscot F (2007) Cross talks at the morphogenetic, physiological and gene regulation levels between the mycobiont Piloderma croceum and oak microcuttings (Quercus robur) during formation of ectomycorrhizas. Phytochemistry 68:52–67

    PubMed  CAS  Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhle M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737

    PubMed  CAS  Google Scholar 

  • Hipp AL, Weber JA (2008) Taxonomy of Hill’s oak (Quercus ellipsoidalis: Fagaceae): evidence from AFLP data. Syst Bot 33:148–158

    Google Scholar 

  • Hokanson SC, Isebrands JG, Jensen RJ, Hancock JF (1993) Isozyme variation in oaks of the Apostle Islands in Wisconsin – genetic structure and levels of inbreeding in Quercus rubra and Q. ellipsoidalis (Fagaceae). Am J Bot 80:1349–1357

    CAS  Google Scholar 

  • Hong C, Richardson P, Kong P, Hu J, Tigner T, Goblet R (2005) Phytophthora species found in Virginia nurseries, forests, and the Shenandoah National Park during surveys for the sudden oak death pathogen. Phytopathology 95:S44

    Google Scholar 

  • Hu SY (1979) Ailanthus. Arnoldia 39:29–50

    Google Scholar 

  • Hubert J (2005) Selecting the right provenance of oak for planting in Britain. Forestry Commission Information Note 77, Edinburgh, UK: http://www.forestry.gov.uk/pdf/fcin077.pdf/$FILE/fcin077.pdf. Accessed 30 Apr 2009

  • Huebner CD (2003) Vulnerability of oak-dominated forests in West Virginia to invasive exotic plants: temporal and spatial patterns of nine exotic species using herbarium records and land classification data. Castanea 68:1–14

    Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    PubMed  CAS  Google Scholar 

  • Isagi Y, Suhandono S (1997) PCR primers amplifying microsatellite of Quercus myrsinifolia Blume and their conservation between oak species. Mol Ecol 6:897–899

    PubMed  CAS  Google Scholar 

  • Ishida TA, Kimura MT (2003) Assessment of within-population genetic structure in Quercus crispula and Q. dentata by amplified fragment length polymorphism analysis. Ecol Res 18:619–623

    CAS  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities:insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440

    PubMed  CAS  Google Scholar 

  • Jacobs DF, Davis AS (2005) Genetic considerations in the operational production of hardwood nursery stock in the eastern USA. Native Plants J 6:4–13

    Google Scholar 

  • Jensen RJ (1977) A preliminary numerical analysis of the red oak complex in Michigan and Wisconsin. Taxon 26:399–407

    Google Scholar 

  • Jensen RJ (1995) Identifying oaks: the hybrid problem. J Int Oak Soc 6:47–54

    Google Scholar 

  • Jensen RJ (1997) Quercus Sect. Lobatae. In: Morin NR (ed) Flora of North America, Vol 3. Oxford University Press. http://www.efloras.org. Missouri Botanical Garden/Harvard University Herbaria, St. Louis, MO/Cambridge, MA, USA. Accessed 30 Apr 2009

  • Jensen RJ, Eshbaugh WH (1976) Numerical taxonomic studies of hybridization of Quercus. I. Populations of restricted areal distribution and low taxonomic diversity. Syst Bot 1:1–10

    Google Scholar 

  • Jensen RJ, DePiero R, Smith BK (1984) Vegetative characters, population variation and the hybrid origin of Quercus ellipsoidalis. Am Midl Nat 111:364–370

    Google Scholar 

  • Jensen RJ, Hokanson SC, Isebrands JG, Hancock JF (1993) Morphometric variation in oaks of the Apostle Islands in Wisconsin – evidence of hybridization between Quercus rubra and Q. ellipsoidalis (Fagaceae). Am J Bot 80:1358–1366

    Google Scholar 

  • Jin YS, Heo SI, Lee MJ, Rhee HI, Wang MH (2005) Free radical scavenging and hepatoprotective actions of Quercus aliena acorn extract against CCl4-induced liver. Free Radic Res 39:1351–1358

    PubMed  CAS  Google Scholar 

  • Johnson PS, Shifley SR, Rogers R (2002) The ecology and silviculture of oaks. CABI, New York, USA

    Google Scholar 

  • Jorge I, Navarro RM, Lenz C, Ariza D, Porras C, Jorrin J (2005) The holm oak leaf proteome: analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics 5:222–234

    PubMed  CAS  Google Scholar 

  • Juncker B, Favre JM (1994) Long-term effects of culture establishment from shoot-tip explants in micropropagating oak (Quercus robur L.). Ann Sci Forest 51:581–588

    Google Scholar 

  • Juzwik J (2000) An oak wilt primer. J Int Oak Soc 11:14–20

    Google Scholar 

  • Kalaev VN, Butorina AK (2006) Cytogenetic effect of radiation in seed of oak (Quercus robur L.) trees growing on sites contaminated by Chernobyl fallout. Silvae Genet 55:93–101

    Google Scholar 

  • Kampfer S, Lexer Ch, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    CAS  Google Scholar 

  • Kang KS, Cheon BH, Kim CS, Han SU, Choi WY (2007) Genetic gain and diversity under different selection methods in a breeding seed orchard of Quercus serrata. Silvae Genet 56:277–281

    Google Scholar 

  • Kanno M, Yokoyama J, Suyama Y, Ohyama M, Itoh T, Suzuki M (2004) Geographical distribution of two haplotypes of chloroplast DNA in four oak species (Quercus) in Japan. Journal of Plant Research 117:311–317

    PubMed  Google Scholar 

  • Kanowski PJ, Mather RA, Savill PS (1991) Genetic control of oak shake – some preliminary results. Silvae Genet 40:166–168

    Google Scholar 

  • Kelly M, Liu DS, McPherson B, Wood D, Standiford R (2008) Spatial pattern dynamics of oak mortality and associated disease symptoms in a California hardwood forest affected by sudden oak death. J Forest Res 13:312–319

    Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080

    Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    CAS  Google Scholar 

  • Kim YW, Youn Y, Noh ER, Kim JC (1997) Somatic embryogenesis and plant regeneration from immature embryos of five families of Quercus acutissima. Plant Cell Rep 16:869–873

    CAS  Google Scholar 

  • Klaper R, Ritland K, Mousseau TA, Hunter MD (2001) Heritability of phenolics in Quercus laevis inferred using molecular markers. J Hered 92:421–426

    PubMed  CAS  Google Scholar 

  • Kleinschmit J (1993) Intraspecific variation of growth and adaptive traits in European oak species. Ann Sci Forest 50(Suppl 1):166–185

    Google Scholar 

  • Kleinschmit J, Kleinschmit JGR (2000) Quercus roburQuercus petraea: a critical review of the species concept. Glas šum Pokuse 37:441–452. http://www.idd.hr/tbhzc/gsp/gsp2000209.pdf. Accessed 30 Apr 2009

  • Klemens J, Deacon N, Cavender-Bares J (2010) Limits to pasture recolonization in a fragmented tropical dry forest: a case study of the tropical live oak Quercus oleoides with implications for restoration. In: Dirzo R, Young HS, Mooney HA, and Ceballos G (eds) Seasonally Dry Tropical Forests. Island Press, Washington, DC, USA, Pp 220–238

    Google Scholar 

  • Ko HG, Park HG, Park SH, Choi CW, Kim SH, Park WM (2005) Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresour Technol 96:1439–1444

    PubMed  CAS  Google Scholar 

  • Koch KA, Quiram GL, Venette RC (submitted). A review of oak wilt management: a summary of available treatment options and their efficacy. Urb For Urb Green

    Google Scholar 

  • Kothencz Z, Lantos A, Vegvari G (2001) Bench grafting of Quercus robur L. ‘Fastigiata’, Quercus pontica and Qurcus × turneri ‘Pseudoturneri’. J Prop Ornam Plants 1:28–30

    Google Scholar 

  • Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Van Dam B, Ducousso A, Forrest I, Lopez de Heredia U, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V (2002) Leaf morphological differentiation between Quercus robur and Quercus petraea in stable across western European mixed oak stands. Ann Forest Sci 59:777–787

    Google Scholar 

  • Kremer A, Casasoli M, Barreneche T, Bodenes C et al (2007) Fagaceae. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 7, Forest trees. Springer, Heidelberg, pp 161–187

    Google Scholar 

  • Kruger A, Peskan-Berghofer T, Frettinger P, Herrmann S, Buscot F, Oelmuller R (2004) Identification of premycorrhiza-related plant genes in the association between Quercus robur and Piloderma croceum. New Phytol 163:149–157

    Google Scholar 

  • Kumar A, Rogstad SH (1998) A hierarchical analysis of minisatellite DNA diversity in Gambel oak (Quercus gambelii Nutt.; Fagaceae). Mol Ecol 7:859–869

    CAS  Google Scholar 

  • Le Corff J, Marquis RJ (1999) Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecol Entomol 24:46–58

    Google Scholar 

  • Lee S, Tamaki E, Katoh S, Furuno T (2007) Identification of Quercus section Prinus species using RAPD markers. Mokuzai Gakkaishi 53:157–162

    CAS  Google Scholar 

  • Lefort F, Lally M, Thompson D, Douglas GC (1998) Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genet 47:257–262

    Google Scholar 

  • Lepais O, Leger V, Gerber S (2006) Short note: high throughput microsatellite genotyping in oak species. Silvae Genet 55:238–240

    Google Scholar 

  • Lexer C, Heinze B, Steinkellner H, Kampfer S, Ziegenhagen B, Glossl J (1999) Microsatellite analysis of maternal half-sib families of Quercus robur, pedunculate oak: detection of seed contaminations and inference of the seed parents from the offspring. Theor Appl Genet 99:185–191

    CAS  Google Scholar 

  • Lexer C, Heinze B, Gerber S, Macalka-Kampfer S, Steinkeller H, Kremer A, Glossl J (2000) Microsatellite analysis of maternal half-sib families of Quercus robur, pedunculate oak: II. Inferring the number of pollen donors from the offspring. Theor Appl Genet 100:858–865

    Google Scholar 

  • Liebhold A, Sork V, Peltonen M, Koenig W, Bjørnstad ON, Westfall R, Elkinton J, Knops JMH (2004) Within-population spatial synchrony in mast seeding of North American oaks. Oikos 104:156–164

    Google Scholar 

  • Lill JT, Marquis RJ (2001) The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia 126:418–428

    Google Scholar 

  • Lill JT, Marquis RJ, Forkner RE, Le Corff J, Holmberg N, Barber NA (2006) Leaf pubescence affects distribution and abundance of generalist slug caterpillars (Lepidoptera: Limacodidae). Environ Entomol 35:797–806

    Google Scholar 

  • Logan WB (2005) Oak: the frame of civilization. WW Norton, London, UK, p 336

    Google Scholar 

  • Lopes T, Pinto G, Loureiro J, Costa A, Santos C (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152

    PubMed  CAS  Google Scholar 

  • Lopez-Aljorna A, Bueno MA, Aguinagalde I, Martin JP (2007) Fingerprinting and genetic variability in cork oak (Quercus suber L.) elite trees using ISSR and SSR markers. Ann Forest Sci 64:773–779

    CAS  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Valentini R, De Lillis M, Csiky O, Seufert G (1998) A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type and Quercus taxonomy. Oecologia 115:302–305

    Google Scholar 

  • Lorimer CG (1980) Age structure and disturbance history of a southern Appalachian virgin forest. Ecology 61:1169–1184

    Google Scholar 

  • Lorimer CG (1993) Causes of the oak regeneration problem. USDA Forest Ser Gen Tech Rep SE SE-84, p 25

    Google Scholar 

  • Loureiro J, Pinto G, Lopes T, Dolezel J, Santos C (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822

    PubMed  CAS  Google Scholar 

  • Lumaret R, Tryphon-Dionnet M, Michaud H, Sanuy A, Ipotesi E, Born C, Mir C (2005) Phylogeographical variation of chloroplast DNA in cork oak (Quercus suber). Annals of Botany 96:853–861

    PubMed  CAS  Google Scholar 

  • Magni CR, Ducousso A, Caron H, Petit RJ, Kremer A (2005) Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol Ecol 14:513–524

    PubMed  CAS  Google Scholar 

  • Manos PS, Stanford AM (2001) The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the northern hemisphere. Int J Plant Sci 162:S77–S93

    Google Scholar 

  • Manos PS, Nixon KC, Doyle JJ (1993) Cladistic analysis of restriction site variation within the chloroplast DNA repeat region of selected Hamamelididae. Syst Bot 18:551–562

    Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    PubMed  CAS  Google Scholar 

  • Manos PS, Zhou Z-K, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379

    Google Scholar 

  • Mariette S, Cottrell J, Csaikl UM, Goikoechea P, Konig A, Lowe AJ, Van Dam BC, Barreneche T, Bodenes C, Streiff R, Burg K, Groppe K, Munro RC, Tabbener H, Kremer A (2002) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. And Q.robur L. stands. Silvae Genet 51:72–79

    Google Scholar 

  • Marquis RJ, Whelan CJ (1994) Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 75:2007–2014

    Google Scholar 

  • Marquis RJ, Lill JT, Piccinni A (2002) Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos 99:531–537

    Google Scholar 

  • Mascheretti S, Croucher PJP, Vettraino A, Prospero S, Garbelotto M (2008) Reconstruction of the sudden oak death epidemic in California through microsatellite analysis of the pathogen Phytophthora ramorum. Mol Ecol 17:2755–2768

    PubMed  CAS  Google Scholar 

  • Masson G, Moutounet M, Puech JL (1995) Ellagitannin content of oak wood as a function of species and of sampling position in the tree. Am J Enol Viticult 46:262–268

    CAS  Google Scholar 

  • Mátyás C (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45–54

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York, USA, p 334

    Google Scholar 

  • McArdle AJ, Santamour FS Jr (1985a) Cultivar checklist for English oak (Quercus robur). J Arboric 11:307–315

    Google Scholar 

  • McArdle AJ, Santamour FS Jr (1985b) Cultivar checklist of white oak species (excl. Quercus robur L.). J Arboricult 11:203–208

    Google Scholar 

  • McArdle AJ, Santamour FS Jr (1987) Cultivar checklist of Quercus (excluding subg. Quercus). J Arboric 13:250–256

    Google Scholar 

  • McCreary DD (2007) Sudden oak death – an update. Int Oak J 18:81–91

    Google Scholar 

  • Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619

    CAS  Google Scholar 

  • Mesa JJ, Infante JJ, Rebordinos L, Sanchez JA, Cantoral JM (2000) Influence of the yeast genotypes on enological characteristics of sherry wines. Am J Enol Vitic 51:15–21

    CAS  Google Scholar 

  • Michler CH, Meilan R, Woeste KE, Pijut PM, Jacobs D, Aldrich P, Glaubitz J (2005) Hardwood genetics and tree improvement – a Midwest USA perspective. The thin green line: a symposium on the state-of-the-art in reforestation proceedings. Thunder Bay, ON, Canada, 26–28 July 2005. Ontario Ministry of Natural Resources, Ontario Forest Research Institute Sault Ste Marie, ON, Forest Research Information Paper No 160, pp 69–74

    Google Scholar 

  • Mir G, Domenech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493

    PubMed  CAS  Google Scholar 

  • Mishima K, Watanabe A, Isoda K, Ubukata M, Takata K (2006) Isolation and characterization of microsatellite loci from Quercus mongolica var. crispula. Mol Ecol Notes 6:695–697

    CAS  Google Scholar 

  • Mohler CL (1990) Co-occurrence of oak subgenera:implications for niche differentiation. Bull Torr Bot Club 117:247–255

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis:community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, UK, pp 357–423

    Google Scholar 

  • Moreau F, Kleinschmit J, Kremer A (1994) Molecular differentiation between Q. petraea and Q. robur assessed by random amplified DNA fragments. Forest Genet 1:51–64

    Google Scholar 

  • Morris M, Perez-Perez M, Smith M, Bledsoe C (2008a) Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza 18:375–383

    PubMed  Google Scholar 

  • Morris MH, Smith ME, Rizzo DM, Rejmánek M, Bledsoe CS (2008b) Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol doi:10.1111/j.1469-8137.2007.02348.x

  • Mosedale JR, Savill PS (1996) Variation of heartwood phenolics and oak lactones between the species and phenological types of Quercus petraea and Q. robur. Forestry 69:47–55

    Google Scholar 

  • Mosedale JR, Charrier B, Janin G (1996) Genetic control of wood colour, density and heartwood ellagitannin concentration in European oak (Quercus petraea and Q. robur). Forestry 69:111–124

    Google Scholar 

  • Muir G, Schlotterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561

    PubMed  CAS  Google Scholar 

  • Muir G, Fleming CC, Schlotterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol Biol Evol 18:112–119

    PubMed  CAS  Google Scholar 

  • Muller CH (1952) Ecological control of hybridization in Quercus: a factor in the mechanism of evolution. Evolution 6:147–161

    Google Scholar 

  • Nakanishi A, Tomaru N, Yoshimaru H, Kawahara T, Yamamoto S (2004) Patterns of pollen flow and genetic differentiation among pollen pools in Quercus salicina in a warm temperate old-growth evergreen broad-leaved forest. Silvae Genet 53:258–264

    Google Scholar 

  • Nason JD, Ellstrand NC, Arnold ML (1992) Patterns of hybridization and introgression in oaks, manzanitas, and irises. Am J Bot 79:101–111

    Google Scholar 

  • Naujoks G, Hertel H, Ewald D (1995) Characterization and propagation of an adult triploid pedunculate oak (Quercus robur L). Silvae Genet 44:282–286

    Google Scholar 

  • Neale DB (2007) Genomics to tree breeding and forest health. Curr Opin Genet Dev 17:539–544

    PubMed  CAS  Google Scholar 

  • Neale DB, Ingvarsson PK (2008) Population, quantitative and comparative genomics of adaptation in forest trees. Curr Opin Plant Biol 11:149–155

    PubMed  CAS  Google Scholar 

  • Nechwatal J, Schlenzig A, Jung T, Cooke DEL, Duncan JM, Osswald WF (2001) A combination of baiting and PCR techniques for the detection of Phytophthora quercina and P. citricola in soil samples from oak stands. Forest Pathol 31:85–97

    Google Scholar 

  • Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang S, Wilde HD, Kodrzycki RJ, Zhang C, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717

    CAS  Google Scholar 

  • Neves C, Hand P, Amancio S (2006) Patterns of B-type cyclin gene expression during adventitious rooting of micropropagated cork oak. Plant Cell Tissue Organ Cult 86:367–374

    CAS  Google Scholar 

  • Nielsen LR, Kjær ED (2008) Tracing timber from forest to consumer with DNA markers. Danish Ministry of the Environment, Forest and Nature Agency. http://www.skovognatur.dk/udgivelser. Accessed 30 Apr 2009

  • Nixon KC (1985) A biosystematic study of Quercus series Virentes (the live oaks) with phylogenetic analyses of Fagales, Fagaceae and Quercus. PhD Thesis, University of Texas, Austin, USA, p 392

    Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci Forest 50(Suppl 1):25s–34s

    Google Scholar 

  • Nixon KC (1997a) Fagaceae. In: Morin NR (ed), Flora of North America, Vol 3. Oxford University Press. Available via efloras, MO Botanical Garden, St. Louis, MO & Harvard Univ Herbaria, Cambridge, MA, USA. http://www.efloras.org. Accessed 28 Feb 2008

  • Nixon KC (1997b) Quercus. In: Morin NR (ed) Flora of North America, Vol 3. Oxford University Press. Available via efloras, MO Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA, USA. http://www.efloras.org. Accessed 28 Feb 2008

  • Nixon KC (2006) Global and neotropical distribition and diversity of oak (genus Quercus) and oak forests. In: Kappelle M (ed) Ecology and conservation of Neotropical montane oak forests (ecological studies). Springer, Berlin, Germany, pp 3–13

    Google Scholar 

  • Nixon KC, Muller CH (1997) Quercus Sect. Quercus. In: Morin NR (ed) Flora of North America, Vol 3. Oxford University Press. Available via efloras, MO Botanical Garden, St. Louis, MO & Harvard Univ Herbaria, Cambridge, MA, USA. http://www.efloras.org. Accessed 28 Feb 2008

  • Oh S-H, Manos PS (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434–451

    Google Scholar 

  • Oishi M, Yokota T, Teramoto N, Sato H (2005) Japanese oak silkmoth feeding preference for and performance on upper-crown and lower-crown leaves. Entomol Sci 9:161–169

    Google Scholar 

  • Okaura T, Quang ND, Ubukata M, Harada K (2007) Phylogeographic structure and late Quaternary population history of the Japanese oak Quercus mongolica var. crispula and related species revealed by chloroplast DNA variation. Genes & Genetic Systems 82:465–477

    CAS  Google Scholar 

  • Olrik DC, Kjaer ED (2007) The reproductive success of a Quercus petraea × Q. robur F1-hybrid in back-crossing situations. Ann Forest Sci 64:37–45

    Google Scholar 

  • Orr A (2001) The genetics of species differences. Trends Ecol Evol 16:343–350

    Google Scholar 

  • Ozcan T, Baycu G (2005) Some elemental concentrations in the acorns of Turkish Quercus L. (Fagaceae) taxa. Pak J Bot 37:361–371

    Google Scholar 

  • Pakkad G, Ueno S, Yoshimaru H (2008) Gene flow pattern and mating system in a small population of Quercus semiserrata Roxb. (Fagaceae). Forest Ecol Manag 255:3819–3826

    Google Scholar 

  • Palmer EJ (1948) Hybrid oaks of North America. J Arnold Arbor Harv Univ 29:1–48

    Google Scholar 

  • Parelle J, Brendel O, Jolivet Y, Dreyer E (2007a) Intra- and interspecific diversity in the response to waterlogging of two co-occurring white oak species (Quercus robar and Q petraea). Tree Physiol 27:1027–1034

    PubMed  Google Scholar 

  • Parelle J, Zapater M, Scotti-Saintagne C, Kremer A, Jolivet Y, Dreyer E, Brendel O (2007b) Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant Cell Environ 30:422–434

    PubMed  Google Scholar 

  • Parent C, Berger A, Folzer H, Dat J, Crevecoeur M, Badot PM, Capelli N (2008) A novel nonsymbiotic hemoglobin from oak:cellular and tissue specificity of gene expression. New Phytol 177:142–154

    PubMed  CAS  Google Scholar 

  • Parker GR, Leopold DJ, Eichenberger JK (1985) Tree dynamics in an old-growth, deciduous forest. Forest Ecol Manag 11:31–57

    Google Scholar 

  • Pearse I, Hipp A (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci USA 106:18097–18102

    PubMed  CAS  Google Scholar 

  • Petit RJ, Kremer A (1993) Ribosomal DNA and chloroplast DNA polymorphisms in a mixed stand of Quercus robur and Q petraea. Ann Sci Forest 50(Suppl 1):41s–47s

    Google Scholar 

  • Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci USA 94:9996–10001

    PubMed  CAS  Google Scholar 

  • Petit RJ, Brewer S, Bordacs S, Burg K, Cheddadi R et al (2002a) Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecol Manag 156:49–74

    Google Scholar 

  • Petit RJ, Csaikl UM, Bordacs S, Burg K, Coart E et al (2002b) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecol Manag 156:5–26

    Google Scholar 

  • Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    CAS  Google Scholar 

  • Pigliucci M (2003) Species as family resemblance concepts: the (dis-)solution of the species problem? Bioessays 25:596–602

    PubMed  Google Scholar 

  • Pijut PM, Woeste KE, Vengadesan G, Michler CH (2007) Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications. In Vitro Cell Dev Biol Plant 43:283–303

    CAS  Google Scholar 

  • Pinkas Y, Maimon M, Shabi E, Elisha S, Shmulewich Y, Freeman S (2000) Inoculation, isolation and identification of Tuber melanosporum from old and new oak hosts in Israel. Mycol Res 104:472–477

    Google Scholar 

  • Pintos B, Manzanera JA, Bueno MA (2007) Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. J Plant Physiol 164:1595–1604

    PubMed  CAS  Google Scholar 

  • Pla M, Huguet G, Verdaguer D, Puigderrajols P, Llompart B, Nadal A, Molinas M (1998) Stress proteins co-expressed in suberized and lignified cells and in apical meristems. Plant Sci 139:49–57

    CAS  Google Scholar 

  • Platt WJ, Schwartz MW (1990) Temperate hardwood forests. In: Myers RL, Ewel JJ (eds.) Ecosystems of Florida. University of Central Florida Press, Orlando, Florida, USA

    Google Scholar 

  • Plomion C, Salin F, Frigerio J-M, Bodenes C, et al. (2007) Development of genomic resources in oak to study the structure, variability, evolution and functioning of its genome. In: Plant and Animal Genomes XV Conference, San Diego, CA, USA, pp W132

    Google Scholar 

  • Porth I, Koch M, Berenyi M, Burg A, Burg K (2005a) Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes. Tree Physiol 25:1317–1329

    PubMed  CAS  Google Scholar 

  • Porth I, Scotti-Saintagne C, Barreneche T, Kremer A, Burg K (2005b) Linkage mapping of osmotic stress induced genes of oak. Tree Genet Genomes 1:31–40

    Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    PubMed  Google Scholar 

  • Prida A, Boulet JC, Ducousso A, Nepveu G, Puech JL (2006) Effect of species and ecological conditions on ellagitannin content in oak wood from an even-aged and mixed stand of Quercus robur L. and Quercus petraea Liebl. Ann Forest Sci 63:415–424

    CAS  Google Scholar 

  • Puech JL, Feuillat F, Mosedale JR (1999) The tannins of oak heartwood: Structure, properties, and their influence on wine flavor. Am J Enol Vitic 50:469–478

    CAS  Google Scholar 

  • Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    PubMed  CAS  Google Scholar 

  • Quero JL, Villar R, Marañón T, Zamora R (2006) Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytol 170:819–833

    PubMed  Google Scholar 

  • Rebbeck J, Hutchinson TF, Long RP (2005) Invasive plants affecting the management of Ohio’s forests. Proceedings 16th US Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species 2005, GTR-NE-337, pp 68–70

    Google Scholar 

  • Redkina NN, Mullagulov RY, Yanbaev YA, Degen B (2008) Fine spatial structure of allozyme genotypes in isolated population of pedunculate oak Quercus robur L. (Fagaceae). Russ J Genet 44:997–999

    CAS  Google Scholar 

  • Repka V (2002) Chlorophyll-deficient mutant in oak (Quercus petraea L.) displays an accelerated hypersensitive-like cell death and an enhanced resistance to powdery mildew disease. Photosynthetica 40:183–193

    CAS  Google Scholar 

  • Rizzo DM, Garbelotto M, Hansen EA (2005) Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Ann Rev Phytopathol 43:309–335

    Google Scholar 

  • Rodriguez-Rajo FJ, Mendez J, Jato V (2005) Factors affecting pollination ecology of Quercus anemophilous species in north-west Spain. Bot J Linn Soc 149:283–297

    Google Scholar 

  • Romano A, Noronha C, Martins-Loucao MA (1992) Influence of growth regulators on shoot proliferation in Quercus suber L. Ann Bot 70:531–536

    CAS  Google Scholar 

  • Saintagne C, Bodenes C, Barreneche T, Pot D, Plomion C, Kremer A (2004) Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity 92:20–30

    PubMed  CAS  Google Scholar 

  • Sanchez MC, San-Jose MC, Ballester A, Vieitez AM (1996) Requirements for in vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees. Tree Physiol 16:673–680

    PubMed  Google Scholar 

  • Sanchez N, Manzanera JA, Pintos B, Bueno MA (2005) Agrobacterium-mediated transformation of cork oak (Quercus suber L.) somatic embryos. New Forest 29:169–176

    Google Scholar 

  • San-Jose MC, Vieitez AM, Ballester A (1990) Clonal propagation of juvenile and adult trees of sessile oak by tissue culture techniques. Silvae Genet 39:50–55

    Google Scholar 

  • Sasamoto H, Hosoi Y (1992) Callus proliferation from the protoplasts of embryogenic cells of Quercus serrata. Plant Cell Tissue Organ Cult 29:241–245

    CAS  Google Scholar 

  • Savill PS, Kanowski PJ, Gourlay ID, Jarvis AR (1993) Genetic and intra-tree variation in the number of sapwood rings in Quercus robur and Q. petraea. Silvae Genet 42:371–375

    Google Scholar 

  • Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Google Scholar 

  • Schiller G, Shklar G, Ungar ED, Al-Omari A, Zyadin AF, Korol L (2006) Genetic diversity assessment by random amplified polymorphic DNA of oaks: 3. Quercus calliprinos Webb. Isr J Plant Sci 54:137–148

    CAS  Google Scholar 

  • Schnabel A, Hamrick JL (1990) Comparative analysis of population genetic structure in Quercus macrocarpa Michx. and Q. gambeli Nutt. Syst Bot 15:240–251

    Google Scholar 

  • Schueler S, Schlunzen K, Scholz F (2005) Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow. Trees Struct Funct 19:154–161

    Google Scholar 

  • Schwarzmann JF, Gerhold HD (1991) Genetic structure and mating system of northern red oak (Quercus rubra L.) in Pennsylvania. Forest Sci 37:1376–1389

    Google Scholar 

  • Scotti-Saintagne C, Bodenes C, Barreneche T, Bertocchi E, Plomion C, Kremer A (2004a) Detection of quantitative trait loci controlling bud burst and height growth in Quercusrobur L. Theor Appl Genet 109:1648–1659

    PubMed  CAS  Google Scholar 

  • Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodenes K, Burg K, Kremer A (2004b) Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168:1615–1626

    PubMed  CAS  Google Scholar 

  • Scotti-Saintagne C, Bertocchi E, Barreneche T, Kremer A, Plomion C (2005) Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Ann Forest Sci 62:369–374

    CAS  Google Scholar 

  • Sebastiani F, Carnevale S, Vendramin GG (2004) A new set of mono- and dinucleotide chloroplast microsatellites in Fagaceae. Mol Ecol Notes 4:259–261

    CAS  Google Scholar 

  • Selås V (2004) Moth outbreaks in relation to oak masting and population levels of small mammals: an alternative explanation to the mammal-predation hypothesis. Popul Ecol 45:157–159

    Google Scholar 

  • Shih FL, Cheng YP, Hwang SY, Lin TP (2006) Partial concordance between nuclear and organelle DNA in revealing the genetic divergence among Quercus glauca (Fagaceae) populations in Taiwan. International Journal of Plant Sciences 167:863–872

    CAS  Google Scholar 

  • Smallwood PD, Peters WD (1986) Grey squirrel food preferences: the effects of tannin and fat concentration. Ecology 67:168–174

    Google Scholar 

  • Smith M, Douhan G, Rizzo D (2007a) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863

    PubMed  CAS  Google Scholar 

  • Smith M, Douhan G, Rizzo D (2007b) Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland. Mycorrhiza 18:15–22

    PubMed  CAS  Google Scholar 

  • Snakkers G, Nepveu G, Guilley E, Cantagrel R (2000) Geographic, silvicultural and individual variabilities of extractive content for French sessile oaks (Quercus petraea Liebl.): Polyphenols, octalactones and volatile phenols. Ann Forest Sci 57:251–260

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman & Co, San Francisco, USA

    Google Scholar 

  • Snover-Clift KL, Clement P, Jensen-Tracy S (2007) Searching for Phytophthora ramorum: three years of surveying New York State and Northeastern nurseries for the sudden oak death pathogen. Phytopathology 97:S109

    Google Scholar 

  • Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144:419–431

    PubMed  CAS  Google Scholar 

  • Soler M, Serra O, Molinas M, Garcia-Berthou E, Caritat A, Figueras M (2008) Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR. Tree Physiol 28:743–751

    PubMed  CAS  Google Scholar 

  • Song JH, Kim NS, Yi YS, Kim YJ, Song JM, Yi JS (2002) Genetic variation of Quercus variabilis in Korea based on RAPD marker analysis. Kor J Genet 24:189–195

    CAS  Google Scholar 

  • Sork VL (1993) Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp). Vegetatio 108:133–147

    Google Scholar 

  • Sork VL, Davis FW, Dyer RJ, Smouse PE (2002a) Mating patterns in a savanna population of Valley Oak (Quercus lobata Neé). USDA Forest Service Gen Tech Rep PSW-GTR-184

    Google Scholar 

  • Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernandez JF, Kuhn B (2002b) Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Mol Ecol 11:1657–1668

    PubMed  CAS  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JE, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Google Scholar 

  • Steele MA, Koprowski JL (2001) North America tree squirrels. Smithsonian Institution Press, Washington, DC, USA

    Google Scholar 

  • Steele MA, Knowles T, Bridle K, Simms EL (1993) Tannins and partial consumption of acorns: implications for dispersal of oaks by seed predators. Am Midl Nat 130:229–238

    Google Scholar 

  • Steinhoff S (1993) Results of species hybridization with Quercus robur L and Quercus petraea (Matt) Liebl. Ann Sci Forest 50(S1):137–143

    Google Scholar 

  • Steinhoff S (1998) Controlled crosses between pendunculate and sessile oak: results and conclusion. Allgem For Jagdzeit 169:163–168

    Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glossl J (1997) Identification and characterization of (GA/CT)(n)-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    PubMed  CAS  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M et al (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    PubMed  CAS  Google Scholar 

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. Forest Ecol Manag 46:59–102

    Google Scholar 

  • Stone GN, Hernandez-Lopez A, Nicholls JA, Pierro E, Pujade-Villar J, Melika G, Cook JM (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63:854–869

    PubMed  CAS  Google Scholar 

  • Suz LM, Martin MP, Oliach D, Fischer CR, Colinas C (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporumQuercus ilex orchards. FEMS Microbiol Lett 285:72–78

    PubMed  CAS  Google Scholar 

  • Suzuki C, Mizuno T (1997) Cultivation of houbitake (Pleurotus sajor-caju). Food Rev Int 13:407–411

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    PubMed  CAS  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    PubMed  CAS  Google Scholar 

  • Tang W, Luo X, Nelson A, Collver H, Kinken K (2003) Functional genomics of wood quality and properties. Genomics Proteomics Bioinformatics 1:263–278

    PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    PubMed  CAS  Google Scholar 

  • Tiffney BH (1985) The Eocene North Atlantic landbridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor 66:243–276

    Google Scholar 

  • Tomlinson PT, Jensen RJ, Hancock JF (2000) Do whole tree silvic characters indicate hybridization in red oak (Quercus section Lobatae)? Am Midl Nat 143:154–168

    Google Scholar 

  • Tooley PW, Kyde KL (2007) Susceptibility of some Eastern forest species to Phytophthora ramorum. Plant Dis 91:435–438

    Google Scholar 

  • Toribio M, Fernandez C, Celestino C, Martinez MT, San-Jose MC, Vieitez AM (2004) Somatic embryogenesis in mature Quercus robur trees. Plant Cell Tissue Organ Cult 76:283–287

    Google Scholar 

  • Trehane P (2007) Oak name database. International Oak Society. http://www.oaknames.org. Accessed 15 Jan 2009

  • Trelease W (1924) The American oaks. Mem Natl Acad Sci 20:1–255

    Google Scholar 

  • Tsvetkov I, Hausman JF (2005) In vitro regeneration from alginate-encapsulated microcuttings of Quercus sp. Sci Hort 103:503–507

    CAS  Google Scholar 

  • Tucker JM (1974) Patterns of parallel evolution of leaf form in New World oaks. Taxon 23:129–154

    Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Ueno S, Tsumura Y (2008) Development of ten microsatellite markers for Quercus mongolica var. crispula by database mining. Conserv Genet 9:1083–1085

    CAS  Google Scholar 

  • Ueno S, Taguchi Y, Tsumura Y (2008) Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes Genet Syst 83:179–187

    PubMed  CAS  Google Scholar 

  • USDA-NRCS (2009) The PLANTS Database. National Plant Data Center, Baton Rouge, LA 70874-4490, USA: http://plants.usda.gov. Accessed 19 Feb 2009

  • Valencia S (2004) Diversidad del genero Quercus (Fagaceae) en Mexico. Bol Soc Bot Mex 75:33–53

    Google Scholar 

  • Valladares S, Sanchez C, Martinez MT, Ballester A, Vieitez AM (2006) Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep 25:879–886

    PubMed  CAS  Google Scholar 

  • Van Dersal W (1940) Utilization of oaks by birds and mammals. J Wildl Manag 4:404–428

    Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Google Scholar 

  • Venette RC, Cohen SD (2006) Potential climatic suitability for establishment of Phytophthora ramorum within the contiguous United States. Forest Ecol Manag 231:18–26

    Google Scholar 

  • Vengadesan G, Pijut PM (2009a) Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell Tissue Organ Cult 97:141–149

    Google Scholar 

  • Vengadesan G, Pijut PM (2009b) In vitro propagation of northern red oak (Quercus rubra L.). In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-008-9182-6

  • Vidal N, Arellano G, San-Jose MC, Vieitez AM, Ballester A (2003) Developmental stages during the rooting of in-vitro cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol 23:1247–1254

    PubMed  CAS  Google Scholar 

  • Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164:183–192

    CAS  Google Scholar 

  • Wang SA, Bai FY (2008) Saccharomyces arboricolus sp nov, a yeast species from tree bark. Int J Syst Evol Microbiol 58:510–514

    PubMed  CAS  Google Scholar 

  • Weigel DR, Van Sambeek JW, Michler CH (eds) (2005) Ninth workshop on seedling physiology and growth problems in oak plantings (abstr) 18–20 Oct 2004, West Lafayette, IN, USA. Gen Tech Rep NC-262 St. Paul, MN, US Department of Agriculture, Forest Service, North Central Research Station, p 28

    Google Scholar 

  • Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecological Monographs 26:1–80

    Google Scholar 

  • Whittaker RH (1969) Evolution of diversity in plant communities. In: Diversity and stability in ecological systems. Brookhaven symposium biology, No 22, pp 178–195

    Google Scholar 

  • Wilhelm E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol Plant 36:349–357

    CAS  Google Scholar 

  • Wilhelm E, Hristoforoglu K, Fluch S, Burg K (2005) Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep 23:790–795

    PubMed  CAS  Google Scholar 

  • Wilson AD (2001) Oak wilt – a potential threat to southern and western oak forests. J Forest 99:4–11

    Google Scholar 

  • Wittgenstein L (1958) Philosophical investigations, 3rd edn. Translated by Anscombe GEM. Macmillan, New York, USA, p 250

    Google Scholar 

  • Woeste KE, McKenna JR (2004) Walnut genetic improvement at the start of a new century. In: Michler CH, Pijut PM, Van Sambeek JW, Coggeshall MV, Seifert J, Woeste K, Overton R, Ponder F Jr (eds) Black Walnut in a New Century, proceedings of the 6th walnut council research symposium, 25–28 July 2004, Lafayette, IN, USA. Gen Tech Rep NC-243. St. Paul, MN, US Department of Agriculture, Forest Service, North Central Research Station, pp 9–17

    Google Scholar 

  • Yacine A, Bouras F (1997) Self- and cross-pollination effects on pollen tube growth and seed set in holm oak Quercus ilex L (Fagaceae). Ann Sci Forest 54:447–462

    Google Scholar 

  • Yakovlev IA, Kleinschmidt J (2002) Genetic differentiation of pedunculate oak Quercus robur L. in the European part of Russia based on RAPD markers. Russ J Genet 38:148–155

    CAS  Google Scholar 

  • Yang J, Kamdem DP, Keathley DE, Han K-H (2004) Seasonal changes in gene expression at the sapwood–heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol 24:461–474

    PubMed  CAS  Google Scholar 

  • Zanetto A, Roussel G, Kremer A (1994) Geographic variation of inter-specific differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl. Forest Genet 1:111–123

    Google Scholar 

  • Zhou ZK (1993) The fossil history of Quercus. Acta Bot Yunnanica 15:21–33

    Google Scholar 

  • Zoldos V, Papes D, Brown SC, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species:Inter- and intra-population variation. Genome 41:162–168

    CAS  Google Scholar 

  • Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977

    CAS  Google Scholar 

  • Zoldos V, Siljak-Yakovlev S, Papes D, Sarr A, Panaud O, Zoldos V, Papes D (2001) Representational difference analysis reveals genomic differences between Q. robur and Q. suber: implications for the study of genome evolution in the genus Quercus. Mol Genet Genomics 265:234–241

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preston R. Aldrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aldrich, P.R., Cavender-Bares, J. (2011). Quercus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21250-5_6

Download citation

Publish with us

Policies and ethics