Skip to main content

Simulation-Driven Design in Microwave Engineering: Application Case Studies

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 359))

Abstract

Application of surrogate-based optimization methods to simulation-driven microwave engineering design is demonstrated. It is essential for the considered techniques that the optimization of the original high-fidelity EM-simulated model is replaced by the iterative optimization of its computationally cheap surrogate. The surrogate is updated using available high-fidelity model data to maintain its prediction capability throughout the optimization process. The surrogate model is constructed from the low-fidelity model which—depending on a particular application case—can be either an equivalent circuit or a coarsely discretized full-wave electromagnetic model. Designs satisfying performance requirements are typically obtained at the cost of just a few evaluations of the high-fidelity model. Here, several surrogate-based design optimization techniques for the use in microwave engineering are discussed. Applications of space mapping, simulation-based tuning, variable-fidelity optimization, as well as various response correction techniques are illustrated. Design examples include planar filters, antennas, and transmission line transitions structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  2. Director, S.W., Rohrer, R.A.: The generalized adjoint network and network sensitivities. IEEE Trans. Circuit Theory CT-16, 318–323 (1969)

    Article  Google Scholar 

  3. CST Microwave Studio, ver. 20109, CST AG. Bad Nauheimer Str.,19, D-64289, Darmstadt, Germany (2010)

    Google Scholar 

  4. HFSS, release 13.0, ANSYS (2010), http://www.ansoft.com/products/hf/hfss/

  5. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate based analysis and optimization. Progress in Aerospace Sciences 41, 1–28 (2005)

    Article  Google Scholar 

  6. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. in Aerospace Sciences 45, 50–79 (2009)

    Article  Google Scholar 

  7. Koziel, S., Bandler, S.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  8. Koziel, S., Meng, J., Bandler, J.W., Bakr, M.H., Cheng, Q.S.: Accelerated microwave design optimization with tuning space mapping. IEEE Trans. Microwave Theory and Tech. 57, 383–394 (2009)

    Article  Google Scholar 

  9. Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech. 58(11), 2829–2837 (2010)

    Article  Google Scholar 

  10. Koziel, S., Ogurtsov, S.: Robust multi-fidelity simulation-driven design optimization of microwave structures. In: IEEE MTT-S Int. Microwave Symp. Dig, Anaheim, CA, pp. 201–204 (2010)

    Google Scholar 

  11. Koziel, S.: Efficient optimization of microwave structures through design specifications adaptation. In: IEEE Int. Symp. Antennas Propag. Toronto, Canada (2010)

    Google Scholar 

  12. Koziel, S., Cheng, Q.S., Bandler, J.W.: Implicit space mapping with adaptive selection of preassigned parameters. IET Microwaves, Antennas & Propagation 4, 361–373 (2010)

    Article  Google Scholar 

  13. Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley, Chichester (2004)

    Google Scholar 

  14. Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for space mapping optimization. Optimization Eng. 9, 375–391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Koziel, S., Bandler, J.W.: Space-mapping optimization with adaptive surrogate model. IEEE Trans. Microwave Theory Tech. 55, 541–547 (2007)

    Article  Google Scholar 

  16. Swanson, D., Macchiarella, G.: Microwave filter design by synthesis and optimization. IEEE Microwave Magazine 8(2), 55–69 (2007)

    Article  Google Scholar 

  17. Rautio, J.C.: EM-component-based design of planar circuits. IEEE Microwave Magazine 8(4), 79–90 (2007)

    Article  Google Scholar 

  18. Cheng, Q.S., Bandler, J.W., Koziel, S.: Space mapping design framework exploiting tuning elements. IEEE Trans. Microwave Theory and Tech. 58(1), 136–144 (2010)

    Article  Google Scholar 

  19. Koziel, S., Bandler, J.W., Cheng, Q.S.: Design optimization of microwave circuits through fast embedded tuning space mapping. In: European Microwave Conference Paris, Septemper 26– October 1 (2010)

    Google Scholar 

  20. Cheng, Q.S., Rautio, J.C., Bandler, J.W., Koziel, S.: Progress in simulator-based tuning—the art of tuning space mapping. IEEE Microwave Magazine 11(4), 96–110 (2010)

    Article  Google Scholar 

  21. Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing use of approximation models in optimization. Struct. Multidisciplinary Optim. 15, 16–23 (1998)

    Google Scholar 

  22. Salleh, M.H.M., et al.: Quarter-wavelength side-coupled ring resonator for bandpass filters. IEEE Trans. Microwave Theory Tech. 56, 156–162 (2008)

    Article  Google Scholar 

  23. FEKO User’s Manual. Suite 5.5, EM Software & Systems-S.A (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa (2009)

    Google Scholar 

  24. Agilent ADS, Version 2009, Agilent Technologies, 395 Page Mill Road, Palo Alto, CA, 94304 (2009)

    Google Scholar 

  25. Koziel, S., Bandler, J.W., Cheng, Q.S.: Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microwave Theory and Tech. 58, 2166–2174 (2010)

    Article  Google Scholar 

  26. Liao, C.-K., Chi, P.-L., Chang, C.-Y.: Microstrip realization of generalized Chebyshev filters with box-like coupling schemes. IEEE Trans. Microwave Theory Tech. 55, 147–153 (2007)

    Article  Google Scholar 

  27. Sonnet em. Ver. 12.54, Sonnet Software. North Syracuse, NY (2009)

    Google Scholar 

  28. Koziel, S., Bandler, J.W.: Automated tuning space mapping implementation for rapid design optimization of microwave structures. In: Int. Review of Progress in Applied Computational Electromagnetics, ACES 2009, pp. 138–143 (2009)

    Google Scholar 

  29. Guan, X., Ma, Z., Cai, P., Anada, T., Hagiwara, G.: A microstrip dual-band bandpass filter with reduced size and improved stopband characteristics. Microwave and Opt. Tech. Lett. 50, 618–620 (2008)

    Article  Google Scholar 

  30. Qing, X.M., Chen, Z.N.: Antipodal Vivaldi antenna for UWB applications. In: European Electromagnetics Symposium, UWB SP 7 (2004)

    Google Scholar 

  31. SMA Edge Mount P.C. Board Receptacles. Online Catalog, Applied Engineering Products, http://aepconnectors.com/pdf/SMAedg.pdf

  32. Beachkofski, B., Grandhi, R.: Improved distributed hypercube sampling. American Institute of Aeronautics and Astronautics, Paper AIAA, 2002–1274 (2002)

    Google Scholar 

  33. Koziel, S., Ogurtsov, S.: Computationally Efficient Simulation-Driven Design of a Printed 2.45 GHz Yagi Antenna. Microwave and Optical Technology Letters 52, 1807–1810 (2010)

    Article  Google Scholar 

  34. Chen, C.A., Cheng, D.K.: Optimum element lengths for Yagi-Uda arrays. IEEE Trans. Antennas Propag. 23, 8–15 (1975)

    Article  Google Scholar 

  35. Cheng, D.K., Chen, C.A.: Optimum element spacings for Yagi-Uda arrays. IEEE Trans. Antennas Propag. 21, 615–623 (1973)

    Article  Google Scholar 

  36. Balanis, C.A.: Antenna theory: analysis and design. Wiley-IEEE Press, Chichester (2005)

    Google Scholar 

  37. Chen, Z.N.: Wideband microstrip antennas with sandwich substrate. IET Microw. Ant. Prop. 2, 538–546 (2008)

    Article  Google Scholar 

  38. Gupta, K.C., Garg, R., Bahl, I., Bhartia, P.: Microstrip lines and slotlines, 2nd edn. Artech House, Norwood (1996)

    Google Scholar 

  39. Simons, R.N.: Coplanar waveguide circuits, components, and systems. Wiley, Chichester (2001)

    Book  Google Scholar 

  40. Cheng, Q.S., Bandler, J.W., Koziel, S., Bakr, M.H., Ogurtsov, S.: The state of the art of microwave CAD: EM-based optimization and modeling. Int. J. RF and Microwave Computer-Aided Eng. 20, 475–491 (2010)

    Article  Google Scholar 

  41. Burke, J.J., Jackson, R.W.: Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide. IEEE Trans. Microwave Theory Tech. 37, 519–525 (1989)

    Article  Google Scholar 

  42. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. In: SIAM Review, vol. 45(3), pp. 385–482 (2003)

    Google Scholar 

  43. Wu, K.: Substrate Integrated Circuits (SiCs) – A new paradigm for future Ghz and Thz electronic and photonic systems. IEEE Circuits and Systems Society Newsletter 3(2) (2009)

    Google Scholar 

  44. Collin, R.E.: Foundation for Microwave Engineering, 2nd edn. Wiley-IEEE Press, Chichester (2000)

    Google Scholar 

  45. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microwave Magazine 9(6), 105–122 (2008)

    Article  Google Scholar 

  46. Ogurtsov, S., Koziel, S., Rayas-Sánchez, J.E.: Design optimization of a broadband microstrip-to-SIW transition using surrogate modeling and adaptive design specifications. In: International Review of Progress in Applied Computational Electromagnetics, Tampere, Finland. ACES, pp. 878–883 (2010)

    Google Scholar 

  47. Koziel, S.: Adaptively adjusted design specifications for efficient optimization of microwave structures. Progress in Electromagnetic Research B (PIER B) 21, 219–234 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koziel, S., Ogurtsov, S. (2011). Simulation-Driven Design in Microwave Engineering: Application Case Studies. In: Yang, XS., Koziel, S. (eds) Computational Optimization and Applications in Engineering and Industry. Studies in Computational Intelligence, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20986-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20986-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20985-7

  • Online ISBN: 978-3-642-20986-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics