Skip to main content

Elastomer Macrocomposites

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 12))

Abstract

This chapter summarizes many of the recent technical research accomplishments in the area of elastomer macrocomposites. Firstly, it explains the compounds that exist in elastomeric matrices as well as the types of filler used in order to reinforce them. Then, the various recent attempts reported on advances of elastomer based macrocomposites are discussed. In addition, an analytical description in their manufacturing techniques and processes is comprehensively reported. Moreover, the techniques used to structurally and mechanically characterize the elastomeric macrocomposites are covered. Their usage in commercial applications is described as a final point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ASTM D 1566-98, Standard Terminology Relating to Rubber (1991)

    Google Scholar 

  2. Suzuki, D.: The tree that changed the world, (videotape). Canadian Broadcasting Corporation, Ottawa, Canada, Rubber Developments, 44(1), 11 (1991)

    Google Scholar 

  3. Subramaniam.: Natural rubber, in rubber technology. Morton, M. (ed.). Van Nostrand Reinhold, New York (1987)

    Google Scholar 

  4. Stern, H.J.: History, In rubber technology and manufacture. Blow, C.M. (ed.). p. 2, Newnes-Butterworths, London (1977)

    Google Scholar 

  5. Buist, J.M.: Proceedings of the Institute of Materials International Rubber Conference, IRC 96, Manchester, UK, Paper No.1 (1996)

    Google Scholar 

  6. Duerden, E.: Plastics and rubber international. 11(3), 22 (1986)

    Google Scholar 

  7. Stern, H.J.: History, in Rubber technology and manufacture. Blow, C.M. (ed.). Newnes-Butterworths, London (1977)

    Google Scholar 

  8. White, J.L.: Rubber processing: technology, materials and principles. Hanser Publishers, Munich (1995)

    Google Scholar 

  9. Stern, H.J.: History, in Rubber technology and manufacture. Blow, C. M. (ed.), Newnes-Butterworths, London (1977)

    Google Scholar 

  10. Famulok, T., Roch, P.: Proceedings of the Institute of Materials International Rubber Conference, IRC 96, Manchester, UK, Paper No.3, (1996)

    Google Scholar 

  11. Stern, H.J.: History, in rubber technology and manufacture. Blow, C. M. (ed.). Newnes-Butterworths, London (1977)

    Google Scholar 

  12. Kuzma, L.J.: Rubber technology, 3rd edn. Morton, M. (ed.). Van Nostrand Reinhold, New York (1987)

    Google Scholar 

  13. Stern, H.J.: History, in rubber technology and manufacture Blow, C. M. (ed.). Newnes-Butterworths, London (1977)

    Google Scholar 

  14. White, J.L.: Rubber processing: technology materials and principles. Hanser Publishers, Munich (1995)

    Google Scholar 

  15. Hertz, D.L.: Jr., Handbook of elastomers. Bhowmick A.K. and Stephens H.L. (ed.). Marcel Dekker Inc., New York (1988)

    Google Scholar 

  16. Bryant, C.L.: Acrylonitrile-Butadiene (Nitrile) Rubbers, in rubber technology and manufacture. Blow, C.M. (ed.). Newnes-Butterworths, London (1977)

    Google Scholar 

  17. Hofmann, W.: Rubber technology handbook. Hanser Publishers, Munich (1989)

    Google Scholar 

  18. Rubber and Plastics News. 14(2), 21 (1984)

    Google Scholar 

  19. Blow, C.M.: Rubber technology and manufacture. Blow, C.M. (ed.). Newnes-Butterworths, London (1977)

    Google Scholar 

  20. Rigbi, Z.: Reinforcement of rubber by carbon black. Adv. Polym. Sci. 36, 21–68 (1980)

    Article  CAS  Google Scholar 

  21. Yan, L.: Mullins effect recovery of a nanoparticle-filled polymer. J. Polym. Sci. Part B Polym. Phys. (2010)

    Google Scholar 

  22. Mark, J.E.: Monte carlo simulations on nanoparticles in elastomers. effects of the particles on the dimensions of the polymer chains and the mechanical properties of the networks. Macromol. Symp. 256(1), 40–47 (2007)

    Google Scholar 

  23. Mdarhri, A.: Microwave dielectric properties of carbon black filled polymers under uniaxial tension. J. Appl. Phys. 101(8), 084111–084122 (2007)

    Google Scholar 

  24. http://www.etrma.org/pdf/

  25. http://www.cb4reach.eu/

  26. http://corporate.evonik.com/en/

  27. Treloar, L.R.G: The physics of rubber elasticity. Oxford University Press (2005)

    Google Scholar 

  28. Tsenoglou, C.: Rubber elasticity of cross-linked networks with trapped entanglements and dangling chains. Macromolecules. 22(1), 284–289 (1989)

    Google Scholar 

  29. Adolf D.: Origins of entanglement effects in rubber elasticity. Macromolecules 21(1), 228–230 (1988)

    Article  CAS  Google Scholar 

  30. Brereton, M.G., Filbrandt, M.: The contribution to rubber elasticity of topological entanglements. Polymer 26(8), 1134–1140 (1985)

    Article  CAS  Google Scholar 

  31. Goppel, J.M.: On the degree on crystallinity in natural rubber II. The orientation of the rubber crystallites in stretched samples. Appl. Sci. Res. 1(1), 18–26 (1949)

    Article  Google Scholar 

  32. Negahban, M.: Modeling the thermomechanical effects of crystallization in natural rubber: III Mechanical properties. Int. J. Solid. Struct. 37, 2811–2824 (2000)

    Article  Google Scholar 

  33. Nielsen, L.E., Stockton, F.D. : Theory of the modulus of crystalline polymers. J. Polym. Sci. Part A: General Papers, 1(6), 1995–2002 (1963)

    Google Scholar 

  34. DiBenedetto, T.: Prediction of the glass transition temperature of polymers: A model based on the principle of corresponding states. J. Polym. Sci. Part B: Polym. Phys. 25(9), 1949–1969 (1987)

    Article  CAS  Google Scholar 

  35. Sperling, L.H.: Introduction to physical polymer science, 4th edn. John Wiley (2006)

    Google Scholar 

  36. Yatsuyanagi, F., Suzuki, N., Ito, M., Kaidou, H.: Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 42(23), 9523–9952 (2001)

    Article  CAS  Google Scholar 

  37. Boonstra, B.B.: Role of particulate fillers in elastomer reinforcement: a review. Polymer 20(6), 691–704 (1979)

    Article  CAS  Google Scholar 

  38. Fröhlich, J., Niedermeier, W., Luginsland, H.-D.: The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. A Appl. Sci. Manuf. 36(4), 449–460 (2005)

    Article  Google Scholar 

  39. Park, S-J., Cho, K-S.: Filler–elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J. Colloid Interface Sci. 267(1), 86–91 (2003)

    Article  CAS  Google Scholar 

  40. Bekaert N.V.: Steelcord Catalogue. (1991)

    Google Scholar 

  41. Clark S K.: Chemical Technology. 41, 482 (1968)

    Google Scholar 

  42. Clark, S.K.: Mechanics of Pneumatic Tires, 2nd edn. US Department of Transport NHTSA, Washington DC (1981)

    Google Scholar 

  43. Evans, L.R., et al.: Use of precipitated silica to improvebrass-coated wire-to-rubber adhesion. 147th Rubber Division A.C.S. Paper No. 16, Spring (1995)

    Google Scholar 

  44. Goodyear, Tire and Rubber Co., Eur Pat. 902 046-A2 (1999)

    Google Scholar 

  45. Gough V.E.: Mechanics of pneumatic tires. US Dept. Transport. NHTSA. p. 204 Washington (1981)

    Google Scholar 

  46. Gough, V.E.: Stiffness of cord and rubber constructions. Rubber Chem. Technol. 41, 1021 (1968)

    Article  Google Scholar 

  47. Hartman, D.R. Greenwood, M.E., Miller, D.M.: High strength glass fibers. Technical paper, Owens-Corning Fiberglas Corp. (1994)

    Google Scholar 

  48. van Ooij, W.J.: Mechanism and theories of rubber adhesion to steel tire cords. Rubber Chem. Technol. 57, 421–456 (1984)

    Article  Google Scholar 

  49. Williams M.L., Landell R. F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955)

    Google Scholar 

  50. Ismail, H.: The potential of rubberwood as a filler in epoxidized natural rubber compounds. J. Elastomers Plast. 33, 34–46 (2010)

    Google Scholar 

  51. Pongdhorn, S-O., Sirisinha, C., Kannika H.,: Properties of natural rubber filled with ultra fine acrylate rubber powder. J. Elastomers Plast. 42, 139–150 (2010)

    Article  CAS  Google Scholar 

  52. Ryu, S.R., Lee, D.J.: Effects of interphase and short fiber on puncture and burst properties of short-fiber reinforced chloroprene rubber. J. Elastomers Plast. 42, 181–197 (2010)

    Google Scholar 

  53. Renata M.B. Fernandes, Leila L.Y. Visconte, and Regina C.R. Nunes: Characteristics of acrylic rubber composites with mica and carbon black. J. Elastomers Plast. 42, 65–74 (2010)

    Google Scholar 

  54. Jeong, D.S., Hong, C.K., Lim, G.T., Seo, G., and Ryu, C.S.: Networked silica with exceptional reinforcing performance for SBR compounds: interconnected by Methylene Diphenyl Diisocyanate. J. Elastomers Plast. 41, 353–368 (2009)

    Google Scholar 

  55. Shtarkova R. and Dishovsky N.: Elastomer-based microwave absorbing materials. J. Elastomers Plast. 41, 163–174 (2009)

    Google Scholar 

  56. Bulsari, P.M., Tzoganakis, C., Penlidis, A.: Hydrosilylation of Impact Polypropylene Co-polymer in a Twin-screw Extruder. J. Elastomers Plast. 40, 365–380 (2008)

    Article  CAS  Google Scholar 

  57. Faruk Yόkseler, R.: A theory for rubber-like shells. J. Elastomers Plast. 40, 39–60 (2008)

    Article  Google Scholar 

  58. Jayasree, T.K., Predeep, P.: Effect of fillers on mechanical properties of dynamically crosslinked styrene butadiene rubber/high density polyethylene blends. J. Elastomers Plast. 40, 127–146 (2008)

    Article  CAS  Google Scholar 

  59. Shinzo J., Yuko, I: Reinforcement of general-purpose grade rubbers by silica generated in situ. Rubber Chem.Technol. 73(3), 534–550 (2000)

    Google Scholar 

  60. Woo, C-S., Kim, W-D., Lee, S-H., Choi, B-I., Park, H-S.: Fatigue life prediction of vulcanized natural rubber subjected to heat-aging. Procedia Eng. 1(1), 9–12 (2009)

    Article  CAS  Google Scholar 

  61. Cao, Y., Mou, H., Shen, F., Xu, H., Hu, G-H., Wu, C.: Hydrogenated nitrile butadiene rubber and hindered phenol composite. II. Characterization of hydrogen bonding. Polym. Eng. Sci. 51(1), 201–208 (2011)

    Google Scholar 

  62. Cao, Y., Shen, F., Mou, H., Cao, D., Xu, H., Wu, C.: Hydrogenated nitrile butadiene rubber and hindered phenol composite. I. Miscibility and dynamic mechanical property. Polym. Eng. Sci. 50(12), 2375–2381 (2010)

    Google Scholar 

  63. Blow, C.M.: Rubber technology and manufacture, Butterworth Scientific, London (1982)

    Google Scholar 

  64. Crawford, R.J.: Rotational molding of plastics, 2nd edn. p. 260. Research Studies Press, London (1996)

    Google Scholar 

  65. Dieter, G.E.: ASM Handbook, materials selection and design, vol 20. ASM International (1997)

    Google Scholar 

  66. Freakley, Philip K.: Rubber processing and production organization. Plenum Press, London (1985)

    Google Scholar 

  67. Grulke, Eric A.: Polymer process engineering, PTR Prentice Hall, Englewood Cliffs, NJ (1994)

    Google Scholar 

  68. Kresta, Jiri E.: Reaction injection molding. Am. Chem. Soc. (1985)

    Google Scholar 

  69. Harry, L: Basic compounding and processing of rubber. Am. Chem. Soc. (1985)

    Google Scholar 

  70. Mark, James E.: Science and technology of rubber. Academic Press, San Diego (1994)

    Google Scholar 

  71. Dawkins, J.V.: Developments in polymer characterization, vol. 1–5. Elsevier, New York (1986)

    Google Scholar 

  72. Booth, Price, C.: Comprehensive polymer science. Polymer characterization, vol. 1. Pergamon, New York (1989)

    Google Scholar 

  73. Yamakawa, H.: Modern theory of polymer solutions. Harper, New York (1971)

    Google Scholar 

  74. Flory, P.J.: Statistical mechanics of chain molecules. Oxford Univ. Press, New York (1969)

    Google Scholar 

  75. Tanaka, Y.: Rubber Chem. Technol. 64, 325 (1991)

    Article  CAS  Google Scholar 

  76. Campbell, White, J.: Polymer characterization. Chapman and Hall, New York (1989)

    Google Scholar 

  77. Baldwin, F.P., Ver Strate, G.: Rubber Chem. Technol. 44, 709 (1972)

    Article  Google Scholar 

  78. Hsu, S.L.: Handbook of vibrational spectroscopy: A companion for polymer scientists. Wiley, New York (2004)

    Google Scholar 

  79. Stuart, B.H.: Polymer Analysis. Wiley, New York (2002)

    Google Scholar 

  80. Koenig, J.L.: Spectroscopy of Polymers, 2nd edn. Elsevier, New York (1999)

    Google Scholar 

  81. Braun, Simple: Methods for Identification of Plastics, 3rd edn. Hanser, New York (1996)

    Google Scholar 

  82. Mitchell, J.: Applied polymer analysis and characterization, vol. 2. Hanser, New York (1992)

    Google Scholar 

  83. Collins., Bares, J., Billmeyer, F.: Experiments in polymer science, Wiley, New York (1973)

    Google Scholar 

  84. Tyler, W.: Rubber Chem. Technol. 40, 238 (1967)

    Article  CAS  Google Scholar 

  85. Ishida, H.: Rubber Chemical Technology 60, 497 (1987)

    Article  CAS  Google Scholar 

  86. Messerschmidt, R., Harthcock, M. (eds.): Infrared microspectroscopy, practical spectroscopy series, vol. 6. Marcel Dekker, New York (1988)

    Google Scholar 

  87. http://www.spectroscopynow.com/

  88. Groover, M.P.: Fundamentals of modern manufacturing: materials, processes and systems, 3rd edn, Accédez directement à la nouvelle édition (2006)

    Google Scholar 

  89. Campbell, F.C.: Manufacturing process for advanced composites. p. 513. Elsevier, New York (2004)

    Google Scholar 

  90. Freakley, P.K.: Rubber processing and production organization. Adv. Mater. Process. 1(1), 53 (1985)

    Google Scholar 

  91. Leblanc, J.L.: Rubber–filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 27(4), 627–687 (2002)

    Article  CAS  Google Scholar 

  92. Thiruvarudchelvan, S.: Elastomers in metal forming: A review. J. Mater. Process. Technol. 39(1–2), 55–82 (1993)

    Article  Google Scholar 

  93. Michaeli, W.: Extrusion dies for plastics and rubber, design and engineering computations, 3rd edn, Hanser Gardner Publications Inc., (2003)

    Google Scholar 

  94. Brzoskowski, R., White, J.L., Szydlowski, W.: Air lubricated die for extrusion of rubber compounds, Gummi Fasern Kunstst, 42(7) 312, 314–317 (1989)

    Google Scholar 

  95. Song, H.J., White, J.L., Min, K., Nakajima, N., Weissert, F.C.: Rheological properties, extrudate swell, and die entry extrusion flow marker experiments for rubber-carbon black compounds. Adv. Polym. Technol. 8(4), 431–449 (1988)

    Article  CAS  Google Scholar 

  96. Isayev, A.I., Huang, Y.-H.: Unsteady flow of rubber compounds at injection molding conditions. Adv. Polym. Technol. 9(3), 167–180 (1989)

    Article  Google Scholar 

  97. Haberstroh, E., Wehr, H.: Rubber processing with gas-assisted injection moulding (R-GAIM). Macromol. Mater. Eng. 284–285(1), 76–80 (2000)

    Article  Google Scholar 

  98. Goettler, L.A.: The extrusion and performance of plasticized poly(vinyl chloride) hose reinforced with short cellulose fibers. Polym. Compos. 4, 249–255 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Anifantis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anifantis, N.K., Georgantzinos, S.K., Giannopoulos, G.I., Kakavas, P.A. (2013). Elastomer Macrocomposites. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers II. Advanced Structured Materials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20928-4_2

Download citation

Publish with us

Policies and ethics