Skip to main content

Two-in-One Antibodies

  • Chapter
  • First Online:
Book cover Bispecific Antibodies
  • 2357 Accesses

Abstract

We discuss in this chapter the recently developed two-in-one antibody format (Bostrom et al. 2009). In contrast to bi-specific antibodies, which assemble two different monospecific binding units into one molecule, two-in-one antibodies are dual-specific antibodies that can be produced as conventional IgG, in which each of the two identical Fab arms recognizes two distinct antigen epitopes. The first proof-of-concept two-in-one bH1 has been selected from the phage-displayed libraries of a human epidermal growth factor (Her2)-specific antibody with varying CDR sequences based on its ability to recognize vascular endothelial growth factor (VEGF) in addition to Her2. The in-depth structural and biophysical analysis of the bH1 binding site shows that although the two paratopes against the two different antigens overlap extensively, structural plasticity – rearrangement of the CDR-L1 loop as well conformational changes in amino acid side chains – allows the binding site to adapt with high shape complementary to the two structurally unrelated antigens. Further, the dual binding function of bH1 has been improved to high affinity and validated by the potent dual action in vitro and in vivo, showing the therapeutic potential of such antibodies. The approach taken to generate bH1 is applicable for producing dual-specific antibodies against other antigen pairs. The two-in-one antibodies have certain advantages, which are also discussed here, and thereby provide a new option for antibody therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J (1998) Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58:2825–2831

    PubMed  CAS  Google Scholar 

  • Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Article  PubMed  CAS  Google Scholar 

  • Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, Man W, Peale F, Ross S, Wiesmann C et al (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614

    Article  PubMed  CAS  Google Scholar 

  • Bostrom J, Haber L, Koenig P, Kelley RF, Fuh G (2011) High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity. PLoS One 6(4):e17887

    Article  PubMed  CAS  Google Scholar 

  • Chames P, Baty D (2009a) Bispecific antibodies for cancer therapy. Curr Opin Drug Discov Devel 12:276–283

    PubMed  CAS  Google Scholar 

  • Chames P, Baty D (2009b) Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs 1:539–547

    Article  PubMed  Google Scholar 

  • Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760

    Article  PubMed  CAS  Google Scholar 

  • Cochran JR (2010) Engineered proteins pull double duty. Sci Transl Med 2:17ps15

    Article  Google Scholar 

  • Cunningham BC, Jhurani P, Ng P, Wells JA (1989) Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science 243:1330–1336

    Article  PubMed  CAS  Google Scholar 

  • de Vos AM, Ultsch M, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255:306–312

    Article  PubMed  Google Scholar 

  • DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein-protein interface. Science 287:1279–1283

    Article  PubMed  CAS  Google Scholar 

  • Diskin R, Marcovecchio PM, Bjorkman PJ (2010) Structure of a clade C HIV-1 gp120 bound to CD4 and CD4-induced antibody reveals anti-CD4 polyreactivity. Nat Struct Mol Biol 17:608–613

    Article  PubMed  CAS  Google Scholar 

  • Fuh G, Wu P, Liang WC, Ultsch M, Lee CV, Moffat B, Wiesmann C (2006) Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab. J Biol Chem 281:6625–6631

    Article  PubMed  CAS  Google Scholar 

  • James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299:1362–1367

    Article  PubMed  CAS  Google Scholar 

  • Janeway C (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Publishing, New York

    Google Scholar 

  • Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W, Zhang W, Tuaillon N, Rainey J, Barat B et al (2010) Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 399:436–449

    Article  PubMed  CAS  Google Scholar 

  • Kelley RF, O’Connell MP (1993) Thermodynamic analysis of an antibody functional epitope. Biochemistry 32:6828–6835

    Article  PubMed  CAS  Google Scholar 

  • Kramer A, Keitel T, Winkler K, Stocklein W, Hohne W, Schneider-Mergener J (1997) Molecular basis for the binding promiscuity of an anti-p24 (HIV-1) monoclonal antibody. Cell 91:799–809

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234:946–950

    Article  PubMed  CAS  Google Scholar 

  • Lee CV, Hymowitz SG, Wallweber HJ, Gordon NC, Billeci KL, Tsai SP, Compaan DM, Yin J, Gong Q, Kelley RF et al (2006) Synthetic anti-BR3 antibodies that mimic BAFF binding and target both human and murine B cells. Blood 108:3103–3111

    Article  PubMed  CAS  Google Scholar 

  • Lindhofer H, Mocikat R, Steipe B, Thierfelder S (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 155:219–225

    PubMed  CAS  Google Scholar 

  • Mack M, Riethmuller G, Kufer P (1995) A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci USA 92:7021–7025

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Kourentzi K, Schick KA, Uehara C, Lipschultz CA, Acchione M, Desantis ME, Smith-Gill SJ, Willson RC (2009) Association energetics of cross-reactive and specific antibodies. Biochemistry 48:1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, Shukair S, Artyomov MN, Pietzsch J, Connors M, Pereyra F et al (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–595

    Article  PubMed  CAS  Google Scholar 

  • Nemazee D (2006) Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol 6:728–740

    Article  PubMed  CAS  Google Scholar 

  • Pal G, Kouadio JL, Artis DR, Kossiakoff AA, Sidhu SS (2006) Comprehensive and quantitative mapping of energy landscapes for protein–protein interactions by rapid combinatorial scanning. J Biol Chem 281:22378–22385

    Article  PubMed  CAS  Google Scholar 

  • Ridgway JB, Presta LG, Carter P (1996) ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9(7):617–621

    Google Scholar 

  • Seimetz D, Lindhofer H, Bokemeyer C (2010) Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36:458–467

    Article  PubMed  CAS  Google Scholar 

  • Senn BM, Lopez-Macias C, Kalinke U, Lamarre A, Isibasi A, Zinkernagel RM, Hengartner H (2003) Combinatorial immunoglobulin light chain variability creates sufficient B cell diversity to mount protective antibody responses against pathogen infections. Eur J Immunol 33:950–961

    Article  PubMed  CAS  Google Scholar 

  • Sethi DK, Agarwal A, Manivel V, Rao KV, Salunke DM (2006) Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 24:429–438

    Article  PubMed  CAS  Google Scholar 

  • Staerz UD, Kanagawa O, Bevan MJ (1985) Hybrid antibodies can target sites for attack by T cells. Nature 314:628–631

    Article  PubMed  CAS  Google Scholar 

  • Tiller T, Tsuiji M, Yurasov S, Velinzon K, Nussenzweig MC, Wardemann H (2007) Autoreactivity in human IgG+ memory B cells. Immunity 26:205–213

    Article  PubMed  CAS  Google Scholar 

  • Trinh CH, Hemmington SD, Verhoeyen ME, Phillips SE (1997) Antibody fragment Fv4155 bound to two closely related steroid hormones: the structural basis of fine specificity. Structure 5:937–948

    Article  PubMed  CAS  Google Scholar 

  • Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377

    Article  PubMed  CAS  Google Scholar 

  • Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, de Vos AM (1997) Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91:695–704

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Charles Eigenbrot for helpful input and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germaine Fuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koenig, P., Fuh, G. (2011). Two-in-One Antibodies. In: Kontermann, R. (eds) Bispecific Antibodies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20910-9_11

Download citation

Publish with us

Policies and ethics