Skip to main content

Next Steps for Optimizing the Accelerator

  • Chapter
  • First Online:
  • 730 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As laser technology improved and LWFA became more popular, injection at density transitions with short transition scale-length was extensively studied in this context as well. First, in 2003 Tomassini et al. [7] published an analytic and numeric treatment of the problem, considering parameters typical for LWFA. The laser intensity is tuned such that the generated wake field is just below the threshold of wave breaking and self injection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y., Malka, V.: Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737 (2006)

    Article  ADS  Google Scholar 

  2. Rechatin, C., Faure, J., Ben-Ismail, A., Lim, J., Fitour, R., Specka, A., Videau, H., Tafzi, A., Burgy, F., Malka, V.: Controlling the phase–space volume of injected electrons in a laser–plasma accelerator. Phys. Rev. Lett. 102(16), 164801 (2009)

    Article  ADS  Google Scholar 

  3. Bulanov, S., Naumova, N., Pegoraro, F., Sakai, J.: Injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E. 58(5), R5257 (1998)

    Article  ADS  Google Scholar 

  4. Suk, H., Barov, N., Rosenzweig, J.B., Esarey, E.: Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86(6), 1011–1014 (2001)

    Article  ADS  Google Scholar 

  5. Suk, H.: Electron acceleration based on self-trapping by plasma wake fields. J. Appl. Phys. 91(1), 487–491 (2002)

    Article  ADS  Google Scholar 

  6. Thompson, M.C., Rosenzweig, J.B., Suk, H.: Plasma density transition trapping as a possible high-brightness electron beam source. Phys. Rev. ST Accel. Beams 7(1), 011301 (2004)

    Article  ADS  Google Scholar 

  7. Tomassini, P., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L., A., Labate, L., Pegoraro, F.: Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking. Phys. Rev. ST Accel. Beams 6(12), 121301 (2003)

    Article  ADS  Google Scholar 

  8. Pukhov, A., Meyer-ter Vehn, J.: Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76(21), 3975–3978 (1996)

    Article  ADS  Google Scholar 

  9. Suk, H., Kim, C., Kim, G.H., Kim, J.U., Ko, I.S., Lee, H.J.: Energy enhancement in the self-injected laser wakefield acceleration using tapered plasma densities. Phys. Lett. A. 316, 233 (2003)

    Article  ADS  Google Scholar 

  10. Suk, H., Lee, H.J., Ko, I.S.: Generation of high-energy electrons by a femtosecond terawatt laser propagating through a sharp downward density transition. J. Opt. Soc. Am. B 21(7), 1391 (2004)

    Article  ADS  Google Scholar 

  11. Suk, H., Lee, H.J.: Tapering effects of a plasma density in laser wakefield accelerations. J. Kor. Phys. Soc. 44(5), 1318 (2004)

    Google Scholar 

  12. Brantov, A.V., Esirkepov, T.Zh., Kando, M., Kotaki, H., Bychenkov, V.Yu., Bulanov, S.V.: Controlled electron injection into the wake wave using plasma density in homogeneity. Phys. Plasmas 15(7), 073111 (2008)

    Article  ADS  Google Scholar 

  13. Kim, J.U., Hafz, N., Suk, H.: Electron trapping and acceleration across a parabolic plasma density profile. Phys. Rev. E 69(2), 026409 (2004)

    Article  ADS  Google Scholar 

  14. Chien, T.-Y., Chang, C.-L., Lee, C.-H., Lin, J.-Y., Wang, J., Chen, S.-Y.: Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp. Phys. Rev. Lett. 94(11), 115003 (2005)

    Article  ADS  Google Scholar 

  15. Jang, H., Kim, J., Yoo, S., Hur, M.S., Suk, H., Cho, M.-H., Namkung, W.: Plasma channel generation for electron acceleration with a laser-induced density gradient. J. Kor. Phys. Soc. 50(5), 1466 (2007)

    Article  ADS  Google Scholar 

  16. Kim, J., Jang, H., Yoo, S., Hur, M., Hwang, I., Lim, J., Kulagin, V., Suk, H., Choi, I. W., Hafz, N., Kim, H.T., Hong, K.-H., Yu, T.J., Sung, J.H., Jeong, T.M., Noh, Y.-C., Koh, D.- K., Lee, J.: Quasi-monoenergetic electron-beam generation using a laser accelerator for ultra-short x-ray sources. Jour. Kor. Phys. Soc. 51(1), 397 (2007)

    Article  ADS  Google Scholar 

  17. Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43(4), 267 (1979)

    Article  ADS  Google Scholar 

  18. Hamster, H., Sullivan, A., Gordon, S., White, W., Falcone, R.W.: Subpicosecond, electromagnetic pulses from intense laser–plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993)

    Article  ADS  Google Scholar 

  19. Nakajima, K., Kawakubo, T., Nakanishi, H., Ogata, A., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Kato, Y., Fisher, D., Downer, M., Tajima, T., Sakawa, Y., Shoji, T., Yugami, N., Nishida, Y.: Proof-of- principle experiments of laser wakefield acceleration using a 1 ps 10 tw nd:glass laser. In: Proceedings of AIP Conference Advanced Accelerator Concepts 145–155 (1995)

    Google Scholar 

  20. Downer, M.C., Siders, C.W., Fisher, D.F., LeBlanc, S.P., Rau, B., Gaul, E., Tajima, T., Babine, A., Stepanov, A., Sergeev, A.: Laser wakefield photon accelerator: optical diagnostics for the laser wakefield accelerator based on longitudinal interferometry. Bull. Am. Phys. Soc. 40, 1862 (1995)

    Google Scholar 

  21. Marquès, J.R., Geindre, J.P., Amiranoff, F., Audebert, P., Gauthier, J.C., Antonetti, A., Grillon, G.: Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse. Phys. Rev. Lett. 76(19), 3566–3569 (1996)

    Article  ADS  Google Scholar 

  22. Gorbunov, L.M., Kirsanov, V.I.: Excitation of plasma waves by an electromagnetic wave packet. SOV. Phys. JETP 66, 290–294 (1987)

    Google Scholar 

  23. Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativistic plasma waves by pulse of electromagnetic radiation. JETP Lett. 50, 198–201 (1989)

    ADS  Google Scholar 

  24. Sprangle, P., Esarey, E., Ting, A.: Nonlinear theory of intense laser–plasma interactions. Phys. Rev. Lett. 64(17), 2011–2014 (1990)

    Article  ADS  Google Scholar 

  25. Sprangle, P., Esarey, E., Ting, A.: Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41, 4463–4469 (1990)

    Article  ADS  Google Scholar 

  26. Coverdale, C.A., Darrow, C.B., Decker, C.D., Mori, W.B., Tzeng, K-C., Marsh, K.A., Clayton, C.E., Joshi, C.: Propagation of intense subpicosecond laser pulses through underdense plasmas. Phys. Rev. Lett. 74(23), 4659–4662 (1995)

    Article  ADS  Google Scholar 

  27. Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M., Tajima, T.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74(22), 4428–4431 (1995)

    Article  ADS  Google Scholar 

  28. Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D., Walsh, F.N.: Electron acceleration from the breaking of relativistic plasma waves. Nature 377(6550), 606–608 (1995)

    Article  ADS  Google Scholar 

  29. Wagner, R., Chen, S.-Y., Maksimchuk, A., Umstadter, D.: Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78(16), 3125–3128 (1997)

    Article  ADS  Google Scholar 

  30. Moore, C.I., Ting, A., Krushelnick, K., Esarey, E., Hubbard, R.F., Hafizi, B., Burris, H.R., Manka, C., Sprangle, P.: Electron trapping in self-modulated laser wakefields by raman backscatter. Phys. Rev. Lett. 79(20), 3909–3912 (1997)

    Article  ADS  Google Scholar 

  31. Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hubbard, R., Burris, H.R., Fischer, R., Baine, M.: Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4(5), 1889–1899 (1997)

    Article  ADS  Google Scholar 

  32. Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R., Clarke R., J.: Observation of a hot highcurrent electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86(7), 1227–1230 (2001)

    Article  ADS  Google Scholar 

  33. Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B., Dangor, A.E.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)

    Article  ADS  Google Scholar 

  34. Hafz, N.A.M., Jeong, T.M., Choi, I.W., Lee, S.K., Pae, K.H., Kulagin, V.K., Sung, J.H., Yu, T.J., Hong, K.-H., Hosokai, T., Cary, J.R., Ko, D.-K., Lee, J.: Stable generation of gev-class electron beams from self-guided laser–plasma channels. Nat. Phot. 2, 571 (2008)

    Article  Google Scholar 

  35. Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F., Malka, V.: A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  36. Geddes, C.G.R. et al.: High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  37. Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R., Krushelnick, K.: Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  38. Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G., Sauerbrey, R.: Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96(10), 105004 (2006)

    Article  ADS  Google Scholar 

  39. Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, Cs., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B., Hooker, S.M.: Gev electron beams from a centimetrescale accelerator. Nature Phys. 2, 696 (2006)

    Article  ADS  Google Scholar 

  40. Osterhoff, J., Popp, A., Major, Zs., Marx, B., Rowlands-Rees, T.P., Fuchs, M., Geissler, M., Hörlein, R., Hidding, B., Becker, S., Peralta, E.A., Schramm, U., Grüner, F., Habs, D., Krausz, F., Hooker, S.M., Karsch, S.: Generation of stable, lowdivergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. Phys. Rev. Lett. 101(8), 085002 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schmid .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid, K. (2011). Next Steps for Optimizing the Accelerator. In: Laser Wakefield Electron Acceleration. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19950-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19950-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19949-3

  • Online ISBN: 978-3-642-19950-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics