Skip to main content

Bioremediation of Contaminated Soils: Effects of Bioaugmentation and Biostimulation on Enhancing Biodegradation of Oil Hydrocarbons

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

Contamination of soils with oil hydrocarbons is currently an important worldwide issue. Among all the available remediation methods, bioremediation is widely considered to be a cost-effective and environmentally friendly approach. For bioremediation to be effective, the overall rate of intrinsic biodegradation and subsequent removal of hydrocarbons must be accelerated, which can be done through biostimulation and bioaugmentation. A variety of techniques for bioaugmentation and biostimulation have been compiled and summarized in this chapter. The evaluation of the potentials to use such treatments to enhance biodegradation rates in oil hydrocarbon contaminated soil is provided, including some recent works from the author’s laboratory. Factors that may enhance biodegradation of oil hydrocarbons in soil are discussed in detail, and finally some examples of new approaches are presented.

This is a preview of subscription content, log in via an institution.

References

  • Aspray T, Gluszek A, Carvalho D (2008) Effect of nitrogen amendment on respiration and respiratory quotient (RQ) in three hydrocarbon contaminated soils of different type. Chemosphere 72:947–951

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Tech Biotechnol 52:149–156

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Betancur-Galvis LA, Alvarez-Bernal D, Ramos-Valdivia AC, Dendooven L (2006) Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco. Chemosphere 62:1749–1760

    Article  CAS  PubMed  Google Scholar 

  • Brown RA, Crosbie JR (1994) Oxygen sources for in situ bioremediation. In: Flathman PE, Jerger DE, Jurgen HE (eds) Bioremediation: field experience. CRC, LLC Boca Raton, FL, pp 311–332

    Google Scholar 

  • Brown GS, Barton LL, Thomson BM (2003) Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons. Waste Manage 23:737–740

    Article  CAS  Google Scholar 

  • Chaillan F, Chaineau CH, Point V, Saliot A, Oudot J (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144:255–265

    Article  CAS  PubMed  Google Scholar 

  • Chaineau CH, Rougeux G, Yepremian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497

    Article  CAS  Google Scholar 

  • Coulon F, Delille D (2003) Effects of biostimulation on growth of indigenous bacteria in sub-Antarctic soil contaminated with oil hydrocarbons. Oil Gas Sci Technol 58:469–479

    Article  CAS  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Biodeterior Biodegradation 54:167–174

    Article  CAS  Google Scholar 

  • Devinny J, Chang SH (2000) Bioaugmentation for soil bioremediation. In: Wise DL, Trantolo D (eds) Bioremediation of contaminated soils. Dekker, New York, pp 465–488

    Google Scholar 

  • Diaz-Ramirez IJ, Escalante-Espinosa E, Favela-Torres E, Gutierrez-Rojas M, Ramirez-Saad H (2008) Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. Int Biodeterior Biodegradation 62:21–30

    Article  CAS  Google Scholar 

  • Fantroussi SE, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  PubMed  Google Scholar 

  • Farinazleen MG, Raja Noor ZA, Abu BS, Mahiran B (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegradation 54:61–67

    Article  Google Scholar 

  • Filonov AE, Akhmetov LI, Puntus IF, Esikova TZ, Gafarov AB, IzmalkovaTY SSL, Kosheleva IA, Boronin AM (2005) The construction and monitoring of genetically tagged, plasmid-containing, naphthalene degrading strains in soil. Microbiology 74:453–458

    Article  CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Tech 34:447–494

    Article  CAS  Google Scholar 

  • Goi A, Kulik N, Trapido M (2006) Combined chemical and biological treatment of oil contaminated soil. Chemosphere 63:1754–1763

    Article  CAS  PubMed  Google Scholar 

  • Gouda MK, Omar SH, Nour Eldin HM, Checkroud ZA (2008) Bioremediation of kerosene II: a case study in contaminated clay (Laboratory and field: scale microcosms). World J Microbiol Biotechnol 24:1451–1460

    Article  CAS  Google Scholar 

  • Hamby DM (1996) Site remediation techniques supporting environmental restoration activities: a review. Sci Total Environ 191:203–224

    Article  CAS  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935

    Article  CAS  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  CAS  PubMed  Google Scholar 

  • Horel A, Schiewer S (2009) Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Reg Sci Technol 58:113–119

    Article  Google Scholar 

  • Hosokawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25:1519–1528

    Article  CAS  Google Scholar 

  • Huling SG, Bledsoe BE, White MV (1990) Enhanced bioremediation utilizing hydrogen peroxide as a supplemental source of oxygen: a laboratory and field study. US EPA RS Kerr Environ Res Lab, Ada, OK, Rep EPA/600/2-90/006. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20007M9S.txt

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    Article  PubMed  Google Scholar 

  • Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    Article  CAS  PubMed  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee M, Kim MK, Kwon M, Park BD, Kim MH, Goodfellow M, Lee S (2005) Effect of the synthesized mycolic acid on the biodegradation of diesel oil by Gordonia nitida strain LE31. J Biosci Bioeng 100:429–436

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zhang X, Dai D, Li G (2009) Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. Int Biodeterior Biodegradation 63:80–87

    Article  CAS  Google Scholar 

  • Lima D, Viana P, Andre S, Chelinho S, Costa C, Ribeiro R, Sousa JP, Fialho AM, Viegas CA (2009) Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74:187–192

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Banks M, Schwab P (2001) Effects of soil water content on biodegradation of phenanthrene in a mixture of organic contaminants. Soil Sediment Contam 10:633–658

    Article  CAS  Google Scholar 

  • Malina G (1999) The bioventing of unsaturated zone contaminated with oil compounds. Monograph 66, Wydawnictwo Politechniki Częstochowskiej, Częstochowa

    Google Scholar 

  • Malina G (2007) Risk reduction of soil and groundwater at contaminated areas. Monograph 132, Wydawnictwo Politechniki Częstochowskiej, Częstochowa

    Google Scholar 

  • Malina G, Zawierucha I (2007) Potential of bioaugmentation and biostimulation for enhancing intrinsic biodegradation in oil hydrocarbon-contaminated soil. Biorem J 11:141–147

    Article  CAS  Google Scholar 

  • Mancera-Lopez ME, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda G, Barrera-Cortes J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeterior Biodegradation 61:151–160

    Article  CAS  Google Scholar 

  • Mariano AP, Kataoka AP, Angelis D, Bonotto DM (2007) Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station. Braz J Microbiol 38:346–353

    Article  Google Scholar 

  • Massa V, Infantino A, Radice F, Orlandi V, Tavecchio F, Giudiuci R, Conti F, Urbini G, Guardo D, Barbieri P (2009) Efficiency of natural and engineered bacterial strains in the degradation of 4-chlorobenzoic acid in soil slurry. Int Biodeterior Biodegradation 63:112–125

    Article  CAS  Google Scholar 

  • Menendez-Vega D, Gallego JLR, Pelaez AI, de Cordoba GF, Moreno J, Munoz D, Sanchez J (2007) Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. Eur J Soil Biol 43:310–321

    Article  CAS  Google Scholar 

  • Mishra S, Sarma PM, Lal B (2004) Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. FEMS Microbiol Lett 235:323–331

    Article  CAS  PubMed  Google Scholar 

  • Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2009) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res. doi:10.1016/j.micres.2009.08.001 Microbiol Res 165:363–375

    PubMed  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Nievas ML, Commendatore MG, Esteves JL, Bucala V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Mater 154:96–104

    Article  CAS  PubMed  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Kalogerakis N (2007) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination 211:286–295

    Article  CAS  Google Scholar 

  • Odokuma LO, Dickson AA (2003) Bioremediation of a crude oil polluted tropical rain forest soil. Global J Environ Sci 2:29–40

    CAS  Google Scholar 

  • Oh YS, Sim DS, Kim SJ (2003) Effectiveness of bioremediation on oil-contaminated sand in intertidal zone. J Microbiol Biotechnol 13:437–443

    CAS  Google Scholar 

  • Olexsey RA, Parker RA (2006) Current and future in situ treatment techniques for the remediation of hazardous substances in soil, sediments, and groundwater. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Viable methods of soil and water pollution: monitoring, protection and remediation. Earth and Environmental Sciences, 69, pp 211–219

    Google Scholar 

  • Perfumo A, Banat IM, Marchant R, Vezzulli L (2007) Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66:179–184

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168

    Article  CAS  PubMed  Google Scholar 

  • Ramirez ME, Zapien B, Zegarra HG, Rojas NG, Fernandez LC (2009) Assessment of hydrocarbon biodegradability in clayed and weathered polluted soils. Int Biodeterior Biodegradation 63:347–353

    Article  CAS  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soil: biological, physical, and chemical processes. CRC, LLC Boca Raton, Florida

    Book  Google Scholar 

  • Rodrigues JLM, Kachel A, Aiello MR, Quensen JF, Maltseva OV, Tsoi TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb). Appl Environ Microbiol 72:2476–2482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (1996) Bioremediation of petroleum contamination. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 100–124

    Chapter  Google Scholar 

  • Rous JD, Sabatini DA, Suflita JM, Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Tech 24:325–370

    Article  Google Scholar 

  • Ruberto L, Vazquez SC, Cormack WPM (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeterior Biodegradation 52:115–125

    Article  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation and monitored natural attenuation. Environ Pollut 136:187–195

    Article  CAS  PubMed  Google Scholar 

  • Sayler GS, Ripp S (2000) Field application of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  PubMed  Google Scholar 

  • Scherr K, Aichberger H, Braun R, Loibner AP (2007) Influence of soil fractions on microbial degradation behaviour of mineral hydrocarbons. Eur J Soil Biol 43:341–350

    Article  CAS  Google Scholar 

  • Sturman PJ, Stewart PS, Cunningham AB, Bouwer EJ, Wolfram JH (1995) Engineering scale-up of in situ bioremediation processes: a review. J Contam Hydrol 19:171–203

    Article  CAS  Google Scholar 

  • Tongarun R, Luepromchai E, Vangnai AS (2008) Natural attenuation, biostimulation and bioaugmentation in 4-chloroaniline-contaminated soil. Curr Microbiol 56:182–188

    Article  CAS  PubMed  Google Scholar 

  • Tsai TT, Kao CM (2009) Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. J Hazard Mater 170:466–472

    Article  CAS  PubMed  Google Scholar 

  • Ubochi KC, Ibekwe VI, Ezeji EU (2006) Effect of inorganic fertilizer on microbial utilization of hydrocarbons on oil contaminated soil. Afr J Biotechnol 5:1584–1587

    CAS  Google Scholar 

  • Ueno A, Ito Y, Yumoto I, Okuyama H (2007) Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World J Microbiol Biotechnol 23:1739–1745

    Article  CAS  Google Scholar 

  • Urum K, Grigson S, Pekdemir T, McMenamy S (2006) A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere 62:1403–1410

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316

    Article  CAS  PubMed  Google Scholar 

  • Vogel TM, Walter MV (2001) Bioaugmentation. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL (eds) Manual of environmental microbiology. American Society for Microbiology, Washington, DC, pp 952–959

    Google Scholar 

  • Walton J, Labine P, Reidies A (1992) The chemistry of permanganate in degradative oxidations. In: Eckenfelder WW, Bowers AR, Roth JA (eds) Chemical oxidation technologies for the nineties. Technomic Publishing Company, New York, pp 205–221

    Google Scholar 

  • Walworth J, Pond A, Snape I, Rayner J, Ferguson S, Harvey P (2007) Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg Sci Technol 48:84–91

    Article  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2009) Application of rhamnolipid and surfactin for enhanced diesel biodegradation: effects of pH and ammonium addition. J Hazard Mater 164:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Wolfe S, Ingold CF (1981) Oxidation of olefins by potassium permanganate, mechanism of α-ketol formation. J Am Chem Soc 103:938–939

    Article  CAS  Google Scholar 

  • Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19:247–257

    Article  CAS  PubMed  Google Scholar 

  • Xie W (2003) Effect of bioventing remediation by surfactant on in-situ oil-contaminated soil. Taiwan, China (M.Sc. Dissertation. NYUST) http://ethesys.yuntech.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0823104-163027

  • Zawierucha I, Malina G (2006) Bioaugmentation as a method of biodegradation enhancement in oil hydrocarbons contaminated soil. Ecohydrol Hydrobiol 6:163–169

    Article  CAS  Google Scholar 

  • Zawierucha I, Szewczyk A, Malina G (2007) Surfactant-enhanced natural attenuation of oil hydrocarbons in soil: the effect of surfactant dose on biodegradation and dehydrogenases activity. In: Goliński P, Zabawa S (eds) Reclamation and revitalization of demoted areas. PZITS, Poznań, pp 237–246

    Google Scholar 

  • Zawierucha I, Szewczyk A, Malina G (2008) Biostimulation with nutrients as a method of biodegradation enhancement in oil hydrocarbons contaminated soil. In: Malina G (ed) Reclamation and revitalization of demoted areas. PZITS, Poznań, pp 99–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Zawierucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zawierucha, I., Malina, G. (2011). Bioremediation of Contaminated Soils: Effects of Bioaugmentation and Biostimulation on Enhancing Biodegradation of Oil Hydrocarbons. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_8

Download citation

Publish with us

Policies and ethics