Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6533))

Included in the following conference series:

Abstract

In cortex surface segmentation, the extracted surface is required to have a particular topology, namely, a two-sphere. We present a new method for removing topology noise of a curve or surface within the level set framework, and thus produce a cortical surface with correct topology. We define a new energy term which quantifies topology noise. We then show how to minimize this term by computing its functional derivative with respect to the level set function. This method differs from existing methods in that it is inherently continuous and not digital; and in the way that our energy directly relates to the topology of the underlying curve or surface, versus existing knot-based measures which are related in a more indirect fashion. The proposed flow is validated empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazin, P.-L., Pham, D.L.: Topology correction of segmented medical images using a fast marching algorithm. Computer Methods and Programs in Biomedicine 88(2), 182–190 (2007)

    Article  Google Scholar 

  2. Bendich, P., Edelsbrunner, H., Morozov, D., Patel, A.: The robustness of level sets. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete & Computational Geometry 37, 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. Amer. Math. Soc., Providence (2009)

    MATH  Google Scholar 

  7. Edelsbrunner, H., Morozov, D., Patel, A.: Quantifying transversality by measuring the robustness of intersections (2009) (preprint)

    Google Scholar 

  8. Freesurfer, http://surfer.nmr.mgh.harvard.edu/

  9. Guyader, C.L., Vese, L.A.: Self-repelling snakes for topology-preserving segmentation models. IEEE Transactions on Image Processing 17(5), 767–779 (2008)

    Article  MathSciNet  Google Scholar 

  10. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  11. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  12. Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.J.: Gradient flows and geometric active contour models. In: ICCV, pp. 810–815 (1995)

    Google Scholar 

  13. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Redwook City (1984)

    MATH  Google Scholar 

  14. Ségonne, F.: Active contours under topology control - genus preserving level sets. International Journal of Computer Vision 79(2), 107–117 (2008)

    Article  Google Scholar 

  15. Ségonne, F., Pacheco, J., Fischl, B.: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26(4), 518–529 (2007)

    Article  Google Scholar 

  16. Sundaramoorthi, G., Yezzi, A.J.: Global regularizing flows with topology preservation for active contours and polygons. IEEE Transactions on Image Processing 16(3), 803–812 (2007)

    Article  MathSciNet  Google Scholar 

  17. Yotter, R.A., Dahnke, R., Gaser, C.: Topological correction of brain surface meshes using spherical harmonics. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 125–132. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Zhang, Y.: The matlab toolbox for 2d/3d image segmentation using level-set based active contour/surface with aos scheme, http://ecson.org/resources/active_contour_segmentation.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, C., Freedman, D. (2011). Topology Noise Removal for Curve and Surface Evolution. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2010. Lecture Notes in Computer Science, vol 6533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18421-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18421-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18420-8

  • Online ISBN: 978-3-642-18421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics