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9.1 History

While harmonic analysis on domains in Euclidean space is a long established
field, as seen in §1.8, the study of the Laplace operator on Riemannian man-
ifolds (together with the heat and wave equations, and the spectrum and
eigenfunctions) seems to have begun only quite recently. Some of the earliest
accomplishments were the computation of the spectrum of CP

n (see §§9.5.4)
and Lichnerowicz’s inequality for the first eigenvalue (see §§9.10.1). The first
paper to address the Laplacian on general Riemannian manifolds was Mi-
nakshisundaram & Pleijel 1949 [930]. More narrowly, Maaß 1949 [889] investi-
gated the Laplacian on Riemann surfaces. Also, one can turn to Avakumović
1956 [90]. But a spark was lit in the 1960’s when Leon Green asked if a
Riemannian manifold was determined by its spectrum (the complete set of
eigenvalues of the Laplacian).

In the special case of Riemann surfaces, a deep study of the spectrum can
be found as early as 1954 in Selberg 1954 [1120, 1121] and 1955 in Huber
1956,1959,1961 [744, 745, 747].

Green’s isospectral question was answered in the negative in Milnor 1964
[922]. Kac 1966 [775] in 1966 was also very influential. But the two major
events were the papers of McKean & Singer 1967 [910] and Hörmander 1968
[734]. We will meet them below; let us just say that the first paper pioneered
the study of the heat kernel expansion in Riemannian geometry, and its con-
sequences. The second was more general, treating the case of a general elliptic
operator, without reference to any Riemannian structure on the manifold
under consideration. But it introduced the wave equation technique, microlo-
cal analysis and symplectic geometry. This technique is indispensable when
studying the relations between the spectrum and the geodesic flow; see §9.9.
Thereafter the subject became a vast field of inquiry.

Note 9.1.0.3 (On the bibliography) As we go on in this book, we will
have to give less and less detail, in order to keep the book of reasonable size.
Then the reader will want to ask for more and more references, especially those
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of general character, as opposed to research articles. There are now quite a
few books which addressing the topic of the present chapter. Some people
still like Berger, Gauduchon, & Mazet 1971 [174] for an introduction and
basic facts. But on most of the more advanced topics that book is completely
outdated. New texts are: Chavel 1984,1993 [325, 326], Buser 1992,1997 [292,
293] which discusses only the spectral geometry of surfaces, Sakai 1996 [1085]
chapter VI, Gilkey 1995 [564] (try to get this second edition), Bérard 1986 [135]
which is very expository but outdated on some advanced topics, Guillemin
& Sternberg 1977 [670]. In particular, Gilkey 1995 [564] is important and
contains an amazing collection of mathematics in a single book, e.g. the η
invariant which is hard to find in books. The heat equation, in a very general
context, is also analyzed in Berline, Getzler & Vergne 1992 [179] and in Gilkey,
Leahy & Park 2000 [566].

There are few completely expository books on the wave equation technique
and microlocal analysis. The bible of Hörmander 1983 [737, 738] is hard to
read, but Trèves 1980 [1198, 1199] is very informative. With a view toward
physics, Guillemin & Sternberg 1977 [670] is fascinating. Note also that Bérard
1986 [135] contains a very extensive bibliography, but up to date only to 1986.
�

9.2 Motivation

Why should a geometer, whose principal concern is in measurements of dis-
tance, desire to engage in analysis on a Riemannian manifold? For example,
pondering the Laplacian, its eigenvalues and eigenfunctions? Here are some
reasons, chosen from among many others. We note also here that the existence
of a canonical elliptic differential operator on any Riemannian manifold, one
which is moreover easy to define and manipulate, is one of the motivations to
consider Riemannian geometry as a basic field of investigation. For Laplacians
on more general spaces, see §14.5 and §14.6.

Riemannian geometry is by its very essence differential, working on man-
ifolds with a differentiable structure. This automatically leads to analysis. It
is interesting to note here that, historically, many great contributions to the
field of Riemannian geometry came from analysts. Let us present a few names
(we do not pretend to be exhaustive). Hadamard’s contribution in quotation
10.1 on page 434 goes back to 1901 and Poincaré’s in §§10.3.1 to 1905. Élie
Cartan was an analyst; see Chern & Chevalley 1952 [368]. More recently, let
us mention Bochner, (see theorem 345 on page 594), Nirenberg (see §§4.6.1),
Chern, Calabi, Aubin, Yau and Gromov.

We will see deep links between the spectrum (especially the first eigenvalue
λ1) and periodic geodesics in §9.9 as well as in theorem 205 on page 447. The
proof of Colding’s L1 theorem 76 on page 262 rests essentially on analysis, as
we have briefly seen there. Harmonic coordinates turn out to be a godsend
when studying convergence of Riemannian manifolds: see §§6.4.3 and §§12.4.2.



376 9 Spectrum of the Laplacian

The deformation of a Riemannian metric via a parabolic evolution equa-
tion, which is based on hard techniques from the theory of partial differential
equations, is extremely useful. We will see this in more than one instance:
see §§11.4.3, the smoothing techniques in §§12.4.2 and the new proof of the
conformal representation theorem 70 on page 254. This is one of many evo-
lution equations arising in Riemannian geometry. Another type of evolution
equation is the heat equation which will turn out not only to be useful in
establishing the existence and some of the first properties of the spectrum
and of the eigenfunctions (see §1.8), but has become a basic tool in a large
number of contexts; see §9.7.

Finally let us mention harmonic maps (see §14.3), minimal submani-
folds (e.g. for the theorem on manifolds with positive curvature operator in
§§§12.3.1.4), and the use of geometric measure theory. And do not forget har-
monic coordinates.

From the point of view of theoretical physics, it is very natural to consider
the semiclassical limit , which is the limiting behaviour of the solutions of the
Schrödinger equation

i�
∂ψ

∂t
= �2Δf

as � → 0. In Euclidean space, this is equivalent to rescaling the spatial coor-
dinates outward, looking at the large scale physics. The hope is that classical
mechanics will emerge from this limit in some sense. This suggests looking
at the asymptotic expansion of the eigenvalues λi as i → ∞. This explains
why we so often mention results such as theorems 164 on page 386, 172 on
page 401, 174 on page 403, and 175 on page 404.

Every manifold is COMPACT and connected unless otherwise
stated.

9.3 Setting Up

9.3.1 Xdefinition

Recalling §1.8 and §1.9, even before tackling the heat equation, the first thing
to do is to define the Laplacian Δ on a Riemannian manifold M with metric
g. It is a second order elliptic differential operator, attached intrinsically to
M . It is not surprising that one can give many equivalent definitions of it.
We start with the most natural, as soon as one knows that the Riemannian
metric enables us to define an intrinsic second derivative (which is not the case
for a manifold with “only” a smooth structure). To every smooth numerical
function

f : M → R

we attach its Hessian
Hess f
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Fig. 9.1. Calculating the Laplacian by differentiating along an orthogonal system
of geodesics and taking the sum

which is the bilinear symmetric quadratic differential form made up by the
second derivatives of f. Namely, using the covariant derivative D, we set

Hess f = Ddf

(see §15.5 if needed). To get a numerical function from this Hessian, we need
only take its trace with respect to the metric g. For technical reasons, we add
a minus sign. Beware that this is a matter of convention, and the convention
depends on the author. The negative sign insures us that the eigenvalues will
be nonnegative (in fact, positive except the 0th whose eigenvalues are the
constant functions). The Laplacian of f is then defined as

Δf = −traceg Hess f .

Since along geodesics, the (covariant) second derivative coincides with the
ordinary numerical second derivative, by the definition of the trace with re-
spect to g, the geometer will define the Laplacian of f at a point m ∈ M
as

Δf(m) = −
d∑

i=1

d2

dt2
f (γi(t))

∣∣∣∣
t=0

where the γi are geodesics through m whose velocities at m form an or-
thonormal basis of TmM. In particular, at the center m of a system of normal
coordinates, this is written

Δf(m) = −
d∑

i=1

∂2f

∂x2
i

(m) .

This cannot be used as a definition directly, since one needs to show that such
a description yields a well defined differential operator. Two other definitions
can be given. The first uses the Hodge ∗ operation applied to differential
forms, which will be defined in §§9.3.2. Then
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Δf = − ∗ d ∗ d .

Using any definition, in general coordinate systems we find

Δf = − 1√
det g

∑
j,k

∂

∂xj

(
gjk
√

det g
∂f

∂xk

)
(9.1)

where
det g = det (gij)

and the gjk are the matrix elements of the inverse matrix to gjk. We won’t
need to use this complicated formula. From all of these definitions, one sees
that this Δ extends to any Riemannian manifold the Δ of Euclidean space
as defined in equation 1.27 on page 94 and the Δ of the sphere defined in
equation 1.28 on page 95. In this formula, one sees that the Laplacian involves
the metric g and its first derivatives; this makes it an invariant which is not
C0 robust, only C1 robust. However, §9.4 will show that the spectrum is C0

robust. This is the beginning of spectral analysis for more general geometries;
see §14.5 and §14.6.

If you are familiar with the notion of symbol of a differential operator,
then the best way to define and to see the uniqueness of the Laplacian is to
say that Δ is the second order differential operator whose principal symbol is
−g (the quadratic form giving the metric g) and which has no term of order
zero.

If we construct a function measuring distance from some point then, when
written in polar geodesic coordinates centered at that point, the Ricci cur-
vature comes into the formula giving the Laplacian of this distance function.
We employed this fact when proving Colding’s L2 theorem 77 on page 264:

d

ds
Δf ◦ γ +

1
d − 1

(Δf ◦ γ)2 ≤ −Ricci (γ′, γ′) .

9.3.2 The Hodge Star

To present many of the foundational facts in spectral geometry1 we need the
definition of the Laplace operator Δ on differential forms and the concept of
adjoint operator. We first denote by Ωp (M) the space of differential forms of
degree p on the differentiable manifold M, which is defined on any differen-
tiable manifold, without need for a Riemannian metric; see §§4.2.2. But if M
is moreover equipped with a Riemannian metric and oriented, then there is
an linear operator

∗ : Ωp (M) → Ωdim(M)−p (M)

called the Hodge star operator. Choosing a positive orthonormal basis

{ei}i=1,...,d

1 For example, theorems 338 on page 588 and 405 on page 665; also see §9.14.
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for the tangent space TmM at a point m ∈ M, define

∗α (ep+1, . . . , ed) = α (e1, . . . , ep) .

This turns out to be independent of the choice of oriented orthonormal basis.
The square of ∗ is plus or minus the identity on Ωp (M):

∗2 = (−1)p(dim(M)−p) .

The differential operator d is transformed by ∗ into another first order
operator, denoted by d∗ (sometimes also by δ)

d∗ = (−1)1+d(p+1) ∗ d∗

which is not dependent on the choice of orientation, hence is intrinsic. The
reason for the notation

δ = d∗

is that it is the adjoint of d:∫
M

dα ∧ β =
∫

M

α ∧ d∗β (9.2)

for any
α, β ∈ Ωp (M)

and any p = 0, . . . ,dim(M). We can define a Laplacian for exterior forms of
any degree by

Δ = − (dd∗ + d∗d) = − (d + d∗)2 . (9.3)

For the moment, we will only use the Laplacian on functions, i.e. p = 0.
This Δ is the same as the one previously defined in this chapter. A useful
formula, valid for any pair of functions, is∫

M

gΔf =
∫

M

〈df, dg〉

=
∫

M

fΔg (9.4)

in particular ∫
M

Δf = 0

for any function f.
When using integrals like the above on compact Riemannian manifolds,

we will often omit the Riemannian canonical measure:∫
M

f =
∫

M

f dVM .
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9.3.3 Facts

The Laplacian on any compact Riemannian manifold provides us with all the
tools of Fourier analysis on our Riemannian manifold. Let us call a function
φ an eigenfunction with eigenvalue the number λ if

Δf = λf .

The set of all eigenvalues of Δ is an infinite discrete subset of R+ called the
spectrum of Δ

Spec (M) = {λk} = {0 < λ1 < λ2 < . . .} (9.5)

with λk tending to infinity with k.
For each eigenvalue λi, the vector space of eigenfunctions φ satisfying

Δf = λif

is always finite dimensional and its dimension is called the multiplicity of λi.
Once we have a basis of the eigenfunctions with this eigenvalue written out,
it is trivial to find an orthonormal basis

{φk}

(where k runs from 1 to the multiplicity) of eigenfunctions. Here the orthonor-
malcy is to be understood for the global scalar product

〈f, g〉L2(M) =
∫

M

fg .

Note that equation 9.4 on the preceding page shows (a classical fact) that
eigenfunctions with different eigenvalues are automatically orthogonal. Unlike
the domains in Euclidean space which we treated in chapter 1, our compact
Riemannian manifolds have no boundary. This explains why we get the “extra”
eigenvalue

λ0 = 0

whose eigenfunctions are the constant functions.2

Note 9.3.3.1 Beware now that there are two different ways of writing the
eigenvalues and the eigenfunctions when making sums. In the first one, we
understand that a sum over the spectrum sums each eigenvalue a number
of times given by its multiplicity. In the other notation, the indices are not
those used in equation 9.5, but instead the index moves up at each eigen-
value through the entire multiplicity. Which sort of summation is required
will always be clear from the context, as in what follows for example. �
2 Since the manifold M is assumed to be connected, the multiplicity of λ0 is exactly
one.
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As for classical Fourier series, any reasonable function

f : M → R

has Fourier coefficients
ai =

∫
M

fφi

and f is recovered from these coefficients by the converging series

f =
∑

i

aiφi .

In the same spirit, the scalar product of two functions is the sum of products
of their coefficients: ∫

M

fg =
∑

i

aibi

where

f =
∑

i

aiφi

g =
∑

i

biφi .

9.3.4 Heat, Wave and Schrödinger Equations

We will follow the same steps that we did in §1.8: defining heat, wave and
Schrödinger equations on Riemannian manifolds. The heat equation for the
heat f(m, t) at time t at a point m of the Riemannian manifold M is

Δf = −∂f

∂t
. (9.6)

The wave equation for the height f(m, t) of the “water” after time t at a point
m is

Δf = −∂2f

∂t2
. (9.7)

where if M were a surface, you would consider M covered in a thin sheet
of water, or for M of three dimensions, M is a place through which sound
is propagating. The wave equation can also be considered as describing the
manifold M as a vibrating membrane object. Finally the Schrödinger equation
uses complex valued functions and is written

�2Δf = i�
∂f

∂t
(9.8)

where i =
√
−1 and � is Planck’s constant.
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To solve these equations, at least formally, one uses the same trick as
in §§1.8.1. To solve such an equation depending both on time t and a point
m ∈ M, the initial idea is to use the fact that, roughly by the Stone–Weierstraß
approximation theorem, we need only to consider product functions

f(m, t) = g(m)h(t) .

One will subsequently consider series of them (as in the theory of Fourier
series). Look for example at the heat equation. The function f = gh satisfies
the heat equation precisely when the functions g and h satisfy

Δg

g
= −h′

h
(9.9)

where
h′(t) =

dh

dt

is the usual derivative.
Since the first fraction depends only on the point m ∈ M and the second

only on the time t their common value has to be a constant, call it λ. Then
the function

g : M → R

is an eigenfunction of Δ with eigenvalue λ, while h is an exponential decay
at rate λ. If all eigenfunctions and eigenvalues of Δ are known, we can then
solve the heat equation explicitly. Note that the time dependence h(t) is

h(t) =

⎧⎪⎨⎪⎩
e−λt for the heat equation
eiλt for the Schrödinger equation
ei

√
λt for the wave equation.

Physically, the product motions g(m)h(t) are the stationary ones—they are
the ones we can observe through some kind of “Riemannian stroboscopy.”

As we did in Euclidean space, we will begin our analysis with the funda-
mental solution of the heat equation, denoted K(m, n, t). One also calls it the
heat kernel. It is a function

K : M × M × R+ → R .

It has the property that the solution f(m, t) of the heat equation with initial
temperature f(m, 0) at time zero is

f(m, t) =
∫

M

K(m, n, t)f(n, 0) dn

and one can prove that the heat kernel is the sum of the convergent series

K(m, n, t) =
∞∑

k=1

φk(m)φk(n)e−λkt. (9.10)
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The reader can check this formally, ignoring convergence, by just plugging the
series into the integral. The hard part, which required analysts’ efforts, is to
prove the convergence.

Another way to write the solution f(m, t) with initial temperature f(m, 0)
is to compute the Riemannian Fourier series

f(m, 0) =
∞∑

k=1

akφk

and then

f(m, t) =
∞∑

k=1

akφk(m)e−λkt .

For the wave equation, the fundamental solution similar to equation 9.10 on
the facing page requires imaginary terms, i.e.

ei
√

λkt

which are linear combinations of

cos
(√

λkt
)

and sin
(√

λkt
)

.

But the dramatic difference between the heat equation and the wave equation
is that waves demand not converging series, but distributions. Heat spreads
out uniformly with time, while waves bounce up and down forever. This ma-
jor difference explains why working with the wave equation (in Riemannian
manifolds, but also in Euclidean spaces) is much more expensive mathemati-
cally. We refer to our bibliographical introduction for references. Note that the
conservative nature of waves will provide an amazing source of information
in §9.8. Another major difference between the heat equation and the wave
equation is that for the waves one does really need to work in the tangent
bundle and use the tools of microlocal analysis; a most informative book on
the subject is Trèves 1980 [1198, 1199].

9.4 The Cheapest (But Most Robust) Method
to Obtain Eigenfunctions: The Minimax Principle

9.4.1 The Principle

Analysis and convergence problems (which we will not attempt to explain)
are very well exposed in Bérard 1986 [135]. We will begin as we did in §§1.8.3.
One way to identify and then study the eigenfunctions is as follows. One pulls
out the first one by the so-called Dirichlet principle. Among all functions, one
looks for one minimizing the ratio
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Dirichlet(f) =

∫
M

‖df‖2∫
M f2

(9.11)

called the Dirichlet quotient.
The infimum value of zero is trivially attained for constant functions. So we

look next to minimize this quotient among functions which are “not constant,”
more precisely among those functions orthogonal to constants, i.e. functions
f with ∫

M

f = 0 .

Let us compute the derivative of this ratio with respect to a variation
f + εg of the function f (assuming it exists) achieving such a minimum, and
use formula 9.3 on page 379 together with the Lagrange multiplier technique.
We find that f necessarily satisfies

Δf = λ1f

for the constant

λ1 = inf

{∫
M

‖df‖2∫
M

f2
:
∫

M

f = 0

}
. (9.12)

Rescale f to have unit norm ∫
M

f2 = 1 .

This yields the first (nontrivial) eigenfunctions together with the first eigen-
value. Unlike a Euclidean domain, where there was only one first eigenfunc-
tion, here there may be a finite dimensional vector space of them; for example
the sphere of dimension d has a d+1 dimensional space of eigenfunctions with
the same eigenvalue λ1.

To get the next eigenfunctions and values, one just applies the same trick,
but restricting the set of functions f into consideration to the set of functions
which are orthogonal to the first eigenfunctions∫

M

fφi = 0

for φ1, . . . , φh a basis for the eigenfunctions with eigenvalue λ1. And keep
going on in this way.

But this procedure necessitates calculating all of the eigenfunctions pre-
ceding the one that we might be looking for. To get around this obstacle, a
wonderful trick was invented, the minimax principle. We first state the result,
and then explain it geometrically on ordinary ellipsoids in E3. The eigenvalue
λk+1 is exactly

λk = inf
V

sup
f∈V

Dirichlet(f) (9.13)
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where V runs through all k + 1 dimensional vector subspaces of the vector
space of real valued functions on M.

The proof is detailed in the beginning of Bérard 1989 [135]. It involves a
little linear algebra (geometrically pictured in figure 9.2) and of course some
analysis, since we are working in an infinite dimensional space.

In Dirichlet(f) there are two positive definite quadratic forms. In R3, say
that the first has as its unit level set an ellipsoid, and the second is the Eu-
clidean structure (i.e. its unit level set is the unit sphere). Then the eigenfunc-
tions correspond to the three principal axes of the ellipsoid, and the eigenval-
ues are their lengths. To find the length of the second principal axis, consider
all of the ellipses obtained by cutting the ellipsoid by planes through the ori-
gin. The largest principal axis that occurs among all of the ellipses is the
largest axis of the ellipsoid. The second largest axis of the ellipsoid is the
largest number that occurs among all ellipses as the smaller of the two axes.3

Fig. 9.2. The Dirichlet quotient is a quadratic function on the unit sphere in the
infinite dimensional space of functions

The above method heuristically explains why every function is equal to a
series of eigenfunctions and, since the space of functions is infinite dimensional,
why the spectrum goes to infinity.

Note 9.4.1.1 A theoretical, but important, consequence of the minimax prin-
ciple is that the spectrum is a robust invariant of the Riemannian metric; it
depends only on the metric g, not on its derivatives (unlike the Laplacian
itself); see equation 9.1 on page 378. Therefore the spectrum can be defined
in a more general context; see §14.6. �

9.4.2 An Application

One of the main tasks when studying the spectrum of Riemannian manifolds
is to relate the spectrum to the Riemannian invariants, for example the curva-
3 It is harder to say than to see.
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tures, the volume, the diameter, the injectivity radius, etc. This is the central
objective of this chapter. So we start right away with an application of the
minimax principle, given in Gromov 1999 [633]; for details, improvement and
explicit constants we refer the reader to Bérard, Besson, & Gallot 1985 [139].

Theorem 164 There is a universal constant

univ(d, r)

depending only on the dimension d of a compact Riemannian manifold M and
the lower bound r of the Ricci curvature, such that for every k the eigenvalue
λk of M obeys the upper bound

λk ≤ univ(d, r)
Vol(M)2/d

k2/d .

The asymptotic behavior in k2/d agrees with that which we will see in theorem
172 on page 401. Upper bounds are in general easier to get than lower ones.
The reason is that the minimax principle, as we are going to see, shows that
one can use upper bounds on the Dirichlet quotient for suitable functions to
control the asymptotics of eigenvalues. For the proof, let us think of large
indices k. The idea is to pack in M , as densely as possible, a set of metric
balls

Bi = B (pi, R) .

The number N of balls is controlled first by the usual metric trick of lemma
125 on page 333: if it is as dense as possible, then the balls

B (pi, 2R)

will completely cover M . This enables us to estimate N with Ricci curvature
thanks to Bishop’s theorem 107 on page 310.

Now on every ball B (pi, R) we define a function fi vanishing at the bound-
ary of B (pi, R) and with a low Dirichlet quotient. This can be done by trans-
ferring (in polar coordinates on B (pi, R)) the first eigenfunction g for the
Dirichlet problem in the manifold with boundary

B

(
Sd

(
r

d − 1

)
, R

)
which is the metric ball of radius R in the comparison space

Sd

(
r

d − 1

)
of constant curvature and whose Ricci curvature is our lower bound r. Knowl-
edge of Ricci curvature permits us to control the Dirichlet quotient during
the transfer (compare this with the geodesic transfer for Rauch–Toponogov
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theorems of chapter 6). This was done in Cheng 1975 [362]. There is a very
nice proof today of Cheng’s result, which is put in a very general context with
a beautiful formula in Savo 1996 [1098]. On these balls in Sd

(
r

d−1

)
the first

eigenvalue is known. This transplantation is similar, but not quite the same,
as that of the Faber–Krahn inequality 1.22 on page 81. One finishes the es-
timate by applying the minimax principle to the N dimensional vector space
of functions which is spanned by the fi.

Fig. 9.3. Pack balls into your manifold, and transfer eigenfunctions into them from
space forms Sd

“
r

d−1

”

9.5 Some Extreme Examples

Let us describe the spectral geometry of the most tractable Riemannian man-
ifolds. We will follow more or less the geometric hierarchy of §6.6.

9.5.1 Square Tori, Alias Several Variable Fourier Series

The theory of eigenfunctions on tori, square or rectangular, is very much like
that which we met in equation 1.21 on page 76 for the plane rectangle, except
that now we use a periodic boundary condition, and of course we work in
any dimension d. The variables x1, . . . , xd separate for the Laplacian and we
still have the Stone–Weierstraß theorem enabling us to look only at product
functions

f (x1, . . . , xd) = f1 (x1) · · · fd (xd) .

Our torus is the quotient of Rd by the group Zd of integral translations (this
means that all sides of the box have unit length). The Riemannian structure
we consider on it is of course the locally Euclidean one just obtained by the
quotient operation. The functions fj (xj) are linear combinations of

cos (2πmjxj) and sin (2πmjxi)
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with the mj any integers; the resulting product function is an eigenfunction
of Δ with eigenvalue

4π2
(
m2

1 + · · · + m2
d

)
.

As in the classical theory of Fourier series, these functions are rich enough so
that there are no other eigenfunctions except appropriate linear combinations
of these ones. The set of eigenvalues is thus known. But their multiplicity is
another story; it leads to many problems in number theory, far from being
finished today. Indeed the question of multiplicity is the question as to how
many ways an integer can be written as a sum of d squares: see the Gauß circle
problem on page 76 which is an unsolved problem in number theory. Some
references on the circle problem: Erdös, Gruber & Hammer 1989 [491], Gruber
& Lekkerkerker 1987 [660] page 135, Gruber & Wills 1993 [661], Walfisz 1957
[1227] and Krätzel 1988 [833]. However the first order asymptotic estimate of

N(λ) = number of eigenvalues (with multiplicity) smaller than λ

is very easy geometrically. We look for the number of points with integral
coordinates which are located inside the ball B (0, r) (centered at the origin)
of radius

r =

√
λ

2π
,

see figure 1.84 on page 76. This figure shows that, up to an error term which
becomes negligible because it is “only” of order Rd−1, we find that N(λ) is
asymptotic to the volume of the ball of radius 2πR, namely

β(d)
(2π)d

λ2/d .

Hence the second term in the expansion is again connected to the circle prob-
lem, and so is unknown.

9.5.2 Other Flat Tori

This time we quotient our vector space Rd by any lattice Λ. A lattice is the set
of all integral linear combinations of a basis of Rd. Motivated by the preceding
“cube” case, we look for functions which are eigenvalues of Δ and Λ periodic.
We search for them among the imaginary exponentials of linear functions,
which can be always written in the form

f(x) = e2πi〈ξ,x〉

where i =
√
−1 and ξ is a vector which we will try to find. We will have Λ

periodicity exactly when the scalar product

〈ξ, x〉
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is an integer for each x ∈ Λ. Those ξ form a lattice, called the dual lattice of
Λ and denoted by Λ∗. It is trivial to see that

Λ∗∗ = Λ

and that
Vol
(
Rd/Λ∗) =

1
Vol (Rd/Λ)

The eigenfunctions of Δ are
e2πi〈ξ,x〉

for ξ ∈ Λ∗ and the eigenvalue of this eigenfunction is

4π2|ξ|2 .

But the precise description of the dual lattice is not so easy. It is only in
dimension 2 that the dual lattice is always deduced from the original lattice
by a similarity. Analysts know how to relate Λ and Λ∗, at least theoretically,
with the Poisson formula:

1

(4πt)d/2
Vol(Λ)

∑
λ∈Λ

e−‖λ‖2/4t =
∑
ξ∈Λ∗

e−4π2‖ξ‖2t. (9.14)

Stated another way, the set of eigenvalues of our torus is the set of 4π2 multi-
ples of square norms (distance to the origin) of the points in the dual lattice
Λ∗. It is important for future developments in this book that the distance to
the origin from a point of Λ is precisely the length of a periodic geodesic of
our torus. So the Poisson formula yields a relation between the spectrum and
the length spectrum.

Fig. 9.4. (a) The same periodic geometric geodesic (b) Λ and Λ∗ are similar in
dimension 2 (only)

The proof of the Poisson formula is not very difficult. We can explicitly
write down the heat kernel K∗ of Rd (see §9.7). One then puts together the
heat kernel K(x, y) of our flat torus as a summation
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i

K∗(x, y + λ)

where λ runs through the lattice defining the torus. Using roughly the same
idea, but with considerably more difficulty one can obtain Selberg’s trace
formula for space forms of negative curvature; see §§9.5.5.

9.5.3 Spheres

Harmonic analysis on spheres is a small miracle: we explained it in §§1.9.2
but the reader might like to see it again here. A polynomial p of degree k on
Rd+1 is said to be harmonic if

Δp = 0

for the Laplacian Δ on Rd+1. The restriction

f = p|Sd

to the sphere turns out to be an eigenfunction of the Laplacian on Sd with
eigenvalue k(k + d − 1). Its multiplicity is just the dimension of the vector
space of harmonic polynomials of degree d, namely(

d + k

k

)
−
(

d + k − 1
k − 1

)
.

Again as above, the Stone–Weierstraß theorem tells us that we have no other
eigenfunctions and a complete orthonormal basis of eigenfunctions. This does
not say that we know everything today about spherical harmonics, even if
many people think we do. We turn now to the next objects in the hierarchy
of §6.6.

9.5.4 KPn

Fourier analysis on CP
n goes back to Élie Cartan in his 1931 monograph

Cartan 1992 [322]. The trick is the same as for the sphere, but here one starts
with Cn+1 and uses harmonic polynomials in the variables

zj , z̄j .

Details can also be found in Berger, Gauduchon & Mazet 1971 [174].
Unhappily this trick does not work with the quaternions. This is linked

with the following fact which we mention here because it is rarely known. It
is impossible to define on Hn useful quaternionic derivatives analogous to the
complex derivatives

∂

∂z
and

∂

∂z̄
.
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A related phenomenon: quaternionic structures on manifolds can be integrable
only in the flat case. For all this, and a good notion of quaternionic functions,
see Joyce 1997 [773] and the references there or the note 13.5.3.1 on page 653.

There are at least two ways to compute the spectra of the remaining KP
n.

One is to use a very general formula due to Hermann Weyl, and valid for all
symmetric spaces. But the formula is explicit only in the sense that it is a
summation over the roots of a certain Lie algebra. To get explicit expressions
is hard. The other way is to use the general link between periodic geodesics
and the spectrum, a quite deep result (unavoidably using the wave equation)
which we will meet in §9.9.

The explicit result for all KP
n can be found on page 202 of Besse 1978

[182]. It is important to note the spectrum. Its square roots are in all cases
included in intervals whose centers make up an arithmetic progression:

Spec (KP
n) ⊂

∞⋃
k=0

[
2π

L

(
k +

α

4

)2

− M,
2π

L

(
k +

α

4

)2

+ M

]
(9.15)

where L is the common length of all of the geodesics (which are all periodic),
M is some fixed constant and the “index” α is

α (KPn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 K = R

1 K = C

3 K = H

7 K = Ca

.

As for the sphere, the multiplicities are very high but this is necessary to
match the asymptotic behaviour of equation 9.20 on page 397. We will meet
this special form of spectrum, as in equation 9.15, again in theorem 177 on
page 406.

0

Fig. 9.5. The spectrum Spec (KPn)

9.5.5 Other Space Forms

The spaces whose spectra we will look for include not only symmetric spaces
of higher rank, but also space forms of negative curvature (any rank). For
space forms of positive curvature and more generally for homogeneous spaces,
the spectrum can be more or less handled in various cases, or only controlled
in some instances. We do not give any details; they can be found in the various
references which we will give later on.
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The very hard but fascinating case is that of space forms of negative cur-
vature. Then one needs to understand not only the Lie group and Lie algebra
but also the discrete subgroup of isometries of the simply connected forms
(of negative curvature) which yield compact quotients under study. The basic
tool was discovered in 1956: it is the Selberg trace formula. This an entire sub-
ject in itself, intimately connected with number theory. We can only afford
to give references on the subject. We choose to offer more or less expository
references as opposed to partial results. We suggest for the Selberg trace for-
mula on surfaces, which is quite special and exceptionally powerful: Buser
1992 [292] chapter 9, but the formula permeates a great deal of the book.
Add of course the references given there. For higher dimensions, see Bunke &
Olbrich 1995 [279]. For more about hyperbolic surfaces see §§9.13.2.

9.6 Current Questions

We can either concentrate on the eigenvalues or on the eigenfunctions. In each
case, we can then ask how to derive information about the eigentheory from
geometric information, and vice versa.

9.6.1 Direct Questions About the Spectrum

A typical result about eigenvalues is theorem 164 on page 386. It provides
practically perfect upper control on the eigenvalues. It is optimal in the sense
that none of the ingredients can be removed. Simple examples show that one
needs a lower bound on the Ricci curvature and on the volume to obtain upper
bounds on eigenvalues.

So the next natural question is to look for lower bounds. We will see below
that lower bounds involve the diameter instead of the volume, and beyond
that no more than a Ricci curvature lower bound; see §§9.7.3.

As explained in §9.2, the main question, vital for many physicists, is the
asymptotic behavior of the spectrum. We will see that the first order term in
the asymptotic expansion is easy to get. The next order term is another story,
as we already saw for the flat torus case. The repartition of the spectrum
about the asymptotic formula, the way the eigenvalues arrange themselves,
is of equal significance in physics. Whatever a precise definition might be,
one feels that the KP

n spectra given in equation 9.15 on the preceding page
is an atypical distribution, with very high multiplicities, and poorly behaved
if we want to tell different vibrations apart by hearing how they differ in
frequencies. Looking at that equation, one might be led to wonder about
gaps in the spectrum. We will meet some answers to this question, but some
elementary questions of this sort are still completely open. Another important
problem, also interesting for applications, is to have a lower bound for the first
eigenvalue λ1. It controls “resonances” and can prevent them. Control of all
of the spectral data we have just discussed cannot be obtained only with a
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lower bound on Ricci curvature, volume and diameter. One will need to know
more on the curvature, the injectivity radius, etc. For the behaviour of the
spectrum when the metric varies, see Lott 2000 [881].

9.6.2 Direct Problems About the Eigenfunctions

There are very few results about eigenfunctions. It is natural to ask for control
on the sup norm of the eigenfunctions, which amounts among other things to
studying the asymptotic behavior of∫

M

φ2
i φj

for a fixed i with j going to infinity. The nodal sets, defined to be the zero
sets of eigenfunctions, are of clear physical significance. Outside singularities,
the nodal sets are hypersurfaces in the manifold. Do they have large measure
(say d − 1 dimensional Hausdorff measure)? How are they located? Think of
the spreading out of nodal sets as a kind of even repartition in space. Today’s
harvest is quite meager: see §9.11.

9.6.3 Inverse Problems on the Spectrum

The literature on recovering Riemannian geometry from the spectrum is im-
mense, this subject having excited people tremendously when it was triggered
by Milnor 1964 [922]. There it was proven that two Riemannian manifolds
which are not isometric can have the same spectrum. We will give below a
brief account of the state of affairs today.

A completely different (still inverse) topic is to try to recover the Rie-
mannian manifold from its geodesic flow. This can be asked in different ways.
Suppose you know the lengths of all of the periodic geodesics (this is the so-
called length spectrum); can you find the metric? But you might know even
more, namely the complete structure of the flow on the unit tangent bundle
(the phase space). See §9.12 and chapter 10 for the state of current knowledge.

9.7 First Tools: The Heat Kernel and Heat Equation

9.7.1 The Main Result

Theorem 165 (Minakshisundaram 1953 [929], McKean & Singer
1967 [910]) Let M be a compact Riemannian manifold. There is a func-
tion

K : M × M × R∗
+ → R

which is C∞ and
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1. Given any initial data f : M → R the solution of the heat equation

−∂F

∂t
= ΔF

with
F (x, 0) = f(x)

is given by

F (x) =
∫

M

K(x, y, t) f(y) dy

2. K is given by the convergent series

K(x, y, t) =
∑

i

exp (−λit)φi(x)φi(y)

(where the eigenfunctions φi of the Laplace operator Δ are chosen so that
they form an orthonormal basis of the square integrable functions on M)

3. For every x ∈ M there is an asymptotic expansion as t → 0 of the form

K(x, x, t) ∼ 1
(4πt)d/2

∞∑
k=0

uk(x)tk

where the uk : M → R are functions given by universal formulae ex-
pressing uk(x) in terms of the curvature tensor of M and its covariant
derivatives at the point x.

The three argument function K is called the fundamental solution of the heat
equation on M , or the heat kernel of M .

If one assumes existence of the heat kernel, it is easy to check the properties
1 and 2. Note the surprising symmetry, which has no reason a priori to hold:

K(x, y, t) = K(y, x, t) .

We recall that the physical interpretation of the heat kernel is the following:
K(x, y, t) is the temperature at time t and at the point y when a unit of heat
(a Dirac δ function) is placed at the point x.

To find the proof and to get a feeling for why property 3 is reasonable, we
recall what we saw in equation 1.26 on page 88, namely that the fundamental
solution of the heat equation for the Euclidean plane was explicitly determined
as

K∗(m, n, t) =
1

4πt
e−‖m−n‖2/4t

For a Euclidean space of general dimension d it is also explicit and easy to
find by formal computation, namely:

K∗(x, y, t) =
1

(4πt)d/2
e−d(x,y)2/4t (9.16)
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where we have replaced the square norm by the distance. To study heat on
more general Riemannian manifolds, the idea is to get some function analogous
to the above on a compact Riemannian manifold. It makes sense to consider
equation 9.16 on the facing page in any Riemannian manifold, provided we
cut it with a step function η. So we will set

H0 = hS0

for
S0 = K∗

above and measure distance according to our Riemannian metric. This is a sort
of first order approximation of the K that we are looking for. We have reason
to hope that we can carry on in this direction, because the exponential decays
very quickly with time t. In analysis, a function like S0 (which approximates
a kernel) is called a parametrix.

The sketch of the complete proof is as follows. We build up an exact
solution in two steps. In the first step, one defines local parametrices with
higher and higher orders of approximation by an induction formula and a
sum as follows:

Sk =
1

(4πt)d/2
e−d(x,y)2/4t

k∑
i=0

ui(x, y)ti

so that (
Δx +

∂

∂t

)
Sk =

1

(4πt)d/2
e−d(x,y)2/4tΔxuk (9.17)

But these functions are only define locally. We now define global functions

Hk

on our manifold with the above and a step function η by setting

Hk = ηSk .

These functions are certainly not what we are looking, since for example
they depend on the choice of η. The trick is to define K again as a series by
a double convolution process which will “forget” the η function. The two vari-
ables in the convolution are the space and the time. We define the convolution
A ∗ B of two functions of (x, y, t) by

(A ∗ B)(x, y, t) =
∫ t

0

dτ

∫
M

A(x, z, τ)B(z, y, t − τ)dVM (z)

and the desired fundamental solution is

K =
∑

i

(
Δx − ∂

∂t

)
(Hk∗)i (9.18)
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which works as soon as k is large enough, namely

k >
d

2
.

For details of the proof we refer to III.E of Berger, Gauduchon & Mazet 1971
[174], Chavel 1984 [325] chapter VI, Gilkey 1995 [564] or chapter 2 of Berline,
Getzler & Vergne 1992 [179]. Formal verification is trivial; the problems are
principally in the convergence of the series and in the smoothness of the
objects; smoothness is where we use the condition

k >
d

2

which will not surprise readers used to Sobolev inequalities; see theorem 118
on page 325.

The universality of property 3 on page 394 is simply due to Élie Cartan’s
philosophy of normal coordinates. We saw one aspect of this philosophy when
commenting on Jacobi’s field equation 6.11 on page 248 in §§6.3.1. The second
aspect is that Jacobi’s equation can be differentiated as many times as we
wish. In the result only the curvature tensor and its covariant derivatives of
various orders will appear, and each of these in some universal polynomial
expression. The Laplacian is also universal, involving only various derivatives
of the Riemannian metric. It remains only to remark that, by construction of
the kernel K in equation 9.18 on the preceding page, the uk are the same as
in property 3.

We mention here that the heat kernel is explicitly known for some spe-
cial manifolds, as is the fundamental solution of the wave equation. Among
these special manifolds are of course Euclidean spaces, spheres, and hyper-
bolic spaces. For example, in the case of the hyperbolic plane, these kernels
are employed in Huber’s result (theorem 192 on page 421). For the spheres,
we can find the kernel in Cheeger & Taylor 1982 [355, 356]; see this text for
previous results. For space forms, see the recent Bunke & Olbrich 1995 [279].
For symmetric spaces see Helgason 1992 [704].

9.7.2 Great Hopes

If in theorem 165 on page 393 we integrate over the manifold M and use
property 2 we get the basic formula∑

k

e−λkt ∼ 1

(4πt)d/2
Vol(M) as t → ∞ (9.19)

which gives us the first order term of the asymptotic behavior of the eigen-
values (counted with multiplicity). This is called the Hermann Weyl estimate,
although Weyl was only interested in domains with boundary in Euclidean
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spaces as seen in §§1.8.5. If one is only interested in obtaining this estimate,
it can be obtained less expensively with the minimax principle.

Regarding inverse problems, the knowledge of the spectrum gives you the
dimension of the manifold and its volume.

As in §§1.8.5, the Hardy–Littlewood–Karamata theorem applies to yield
what we are really interested in, namely

N(λ) = # {λi < λ}

=
β(d)
(2π)d

Vol(M, g)λd/2 + o
(
λd/2
)

(9.20)

as λ → ∞. From here, completely elementary calculus yields

λk ∼
(

(2π)d

β(d)Vol(M, g)

)2/d

k2/d (9.21)

Note the perfect compatibility of this formula with theorem 164 on page 386.

Fig. 9.6. The Weyl asymptotic for surfaces

The function N(λ) is a step function. The next natural question on the
spectrum is

Question 166 How does the function N(λ) distribute itself around the con-
tinuous function giving the asymptotic behaviour?

Today we know very little about this question. But we will see in §9.9 that
with the wave equation technique one can replace the little o by a capital

O
(
λ(d−1)/2

)
.

This will permit some rudimentary control, on the gaps for example.
There is also a heuristic principle to the effect that there is a deep relation

between the jumps in the spectrum and the lengths of the periodic geodesics.
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See §9.9, theorem 176 on page 405, note 9.9.0.1 on page 408, the proof of
theorem 189 on page 420, and §§§ 9.13.2.1 on page 426.

The reader might wonder why we did not use the full asymptotic expansion
obtained from parts 2 and 3 of theorem 165 on page 393. Let us look at it:∑

k

e−λkt ∼ 1
(4πt)d/2

(
Vol(M, g) + U1t + U2t

2 + · · ·
)

as t → ∞ (9.22)

where
Uk =

∫
M

uk .

We did not do so first because the Hardy–Littlewood–Karamata theorem does
not provide any information beyond the first order term. That is to say, the
knowledge of the Uk is strictly useless for finding the higher order terms in
N(λ). We will need more than the above expansion—either a much more
subtle analysis of the heat kernel or, better, the wave equation.

Still one can try to use theorem 165 on page 393 and see what one can
extract from it. As expected the first uk expressions should be simple. In fact
various authors have computed the two first; if we write scalar for the scalar
curvature of our manifold, and R for its Riemann curvature tensor, then

u1(x) =
1
6

scalar(x)

u2(x) =
1

360
(
2‖R‖2 − 2‖Ricci‖2 + 5 scalar2

) (9.23)

Beginning with the third term, the expressions become more and more com-
plicated. For example, the third term involves the covariant derivative of the
curvature tensor. We refer for those and their applications to: the end of this
section for the uniqueness of the spectrum of low dimensional spheres, to the-
orem 188 on page 418 for the compactness of the sets of isospectral metrics on
compact surfaces, to Gilkey 1995 [564] and Berline 1992 [179] for very general
references.

If you integrate u1 you get

1
6

∫
M

scalar .

If M is a surface, the Blaschke–Gauß–Bonnet formula 28 on page 138 yields

1
6

∫
M

scalar =
π

3
χ(M) .

Although this is of no use for calculating N(λ), it is very helpful for the inverse
problem—it implies that the knowledge of the spectrum (1) tells you that you
are on a surface (see above) but moreover (2) we now know its genus.

An important (but which will turn out eventually to be a “useless”) remark:
the fact we get a topological invariant, in particular an invariant of rescaling
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the metric, is not surprising because U1t has to be divided by t2/d = t here,
so it is dimensionless. So the natural question is: is U2 a topological invariant
of four dimensional manifolds? This question brought great excitement to
spectral geometry in 1966, and was one of the reasons for serious study of
the Uk. The answer is no. A simple reason is that the generalization of the
Gauß–Bonnet theorem in four dimensions (see §§11.3.6 or §15.7) is

χ(M) =
1

32π2

∫
M

‖R‖2 − 4‖Ricci ‖2 + scalar2 (9.24)

Asking U2 to be invariant as well (even if not linked to the characteristic) is
too much, as trivial examples show.

From the opposite point of view, it is easy to apply equations 9.23 on the
facing page to a surface to prove that the round (constant curvature) sphere
S2 is characterized by its spectrum, as are flat tori. On the other hand, we will
see in §§9.13.2 that there are isospectral nonisometric Riemannian surfaces of
constant negative curvature. Still, using the higher Uk, it is proven in Tanno
1980 [1181] that round spheres of up to six dimensions are characterized by
their spectra. The same question for higher dimensional spheres is still open
today. This shows how far we are today toward understanding the spectra of
Riemannian manifolds. Another nice application of the Uk is to be found in
§§9.12.3.

Note 9.7.2.1 (Spectra of space forms) Let us reconsider that the knowl-
edge of the spectrum yields the knowledge of all the Uk integrals. Look at
the case of space forms (of constant sectional curvature). Then all the uk are
known and in particular the Uk are all known as soon as one knows the volume
of the manifold. This does not yield the space form (up to isometry) except
in one dimension. �

The spectral determination of the Euler characteristic χ above for surfaces
is exceptional: today there is no known topological information in the spec-
trum in dimensions three and higher. Of course, so far we are discussing the
spectra of the Laplace operator on functions. For the spectra of the Laplace
operator on more general tensors, e.g. differential forms, see §9.14.

Note 9.7.2.2 (Futility of the Uk) Besides the theoretical interest of estab-
lishing a solid foundation for Fourier analysis on a Riemannian manifold, at
this moment the heat equation technique seems to be of little use. It might
seem that this is because the curvature appears in the asymptotic expansion
in a too algebraically complicated manner. Except for the second term, the
expansion involves not only the curvature but also its covariant derivatives; in
particular geometric invariants (the volume excepted) like the diameter, the
injectivity radius, the geodesic flow, do not enter into it. But one “explana-
tion” for the impotence of the Uk is given by the following, which is a strong
generalization of theorem 186 on page 415:
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Theorem 167 (Lohkamp 1996 [874]) Consider any compact manifold M
of dimension larger than two, and any infinite sequence of positive numbers

0 < λ1 < λ2 < · · · .

Then there is a sequence of metrics gm on M of fixed volume and fixed integral
of scalar curvature such that not only does the spectrum of gm coincide with
the given sequence from 0 to λm, but all of the U2k go to +∞ and all of the
U2k+1 go to −∞. Under the same conditions, there is also another sequence
of metrics with the same spectral condition but this time the volume is fixed
and the Ricci curvature satisfies

Ricci (gm) < −m2 .

This explains the near inefficacy of the Uk and the poverty of the hypothesis
of negativity of Ricci curvature (see §§12.3.5). For the nature of the proof, see
§§9.12.1. �

There is also an important geometric formula which deserves to be men-
tioned, even if at the moment it has no geometric application:

Theorem 168 (Varadhan 1967 [1206])

lim
t→0

t log K(x, y, t) = −d (x, y)2

2

for any x, y close enough.

Varadhan’s formula works within the injectivity radius. What happens when
y moves to the cut locus of x is the subject of Malliavin & Stroock 1996 [890];
dramatic changes take place, for example on the standard sphere strange
events occur at antipodal points. But theorem 168 is fundamental to modern
probability theory, and in particular to the Malliavin stochastic calculus on
infinite dimensional Riemannian manifolds (e.g. path spaces).

Exterior differential forms are canonically attached to a differentiable man-
ifold and a Riemannian metric also provides a Laplace operator on them. But
more generally there are other kind of bundles one can look at, as well as
suitable differential operators. Some are canonical, as in the case of spinors,
while others are built up with various techniques e.g. twisting canonical ones,
etc. In this context the heat equation method works and yields important
results. Some are of interest in themselves; these will be described briefly
in §14.2. Some are basic tools for Riemannian geometry; we will meet such
applications twice in §§12.3.3.

Still thinking about heat, we mention the recent notion of heat content
of a domain in a Riemannian manifold. This notion has various applications,
even in the Euclidean case, and probably some future: see Savo 1998 [1099].
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9.7.3 The Heat Kernel and Ricci Curvature

In §§9.4.2, we used the minimax principle to get upper bounds on the spec-
trum. Lower bounds are more difficult. The case of the first eigenvalue λ1

is treated separately in §9.11. We will now address the question of a lower
bound for every eigenvalue. An optimal result can be found in Bérard, Besson
& Gallot 1985 [139]; see the book Bérard 1986 [135] for a detailed exposition.
To formulate their result we introduce some notation.

Definition 169
Z(t) =

∑
k

e−λkt

which we will write as
ZM,g(t)

when we need to specify which Riemannian manifold M and metric g is being
invoked. Similar notation is used to specify the manifold and metric when
discussing the heat kernel:

Definition 170
KM,g(x, y, t) = K(x, y, t)

Then we can state:

Theorem 171 There is a universal constant

c = univ(inf Ricci, dim, diam)

(where inf Ricci is the lower bound of the Ricci curvature, dim the dimension
and diam the diameter of a Riemannian manifold M) such that for any time
t

ZM (t) ≤ Vol(M) sup
x,y∈M

KM (x, y, t) ≤ ZSd (ct)

This is a very strong result since it is a bound for the whole heat kernel. Since
the spectrum of the standard sphere Sd is known, one gets immediately:

Theorem 172 There is universal constant such that all eigenvalues satisfy
the lower bound

λk ≥ univ(inf Ricci, d, diam)k2/d .

The term k2/d agrees with Weyl’s asymptotic 9.19 on page 396 for the
power of k but not for the volume. Moreover, simple examples show that the
diameter, not only the volume, is really needed. Examples also show that these
results are optimal as far as the ingredients (see how they enter more explicitly
in Bérard, Besson & Gallot 1985 [139]. Finding optimal explicit values is an
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open problem. The authors’ values are explicit but not optimal, especially in
the case of negative Ricci curvature. This will be seen from the proof.

The proof is very geometrical. Look again carefully at the proof of the
Faber–Krahn inequality 1.22 on page 81 for the fundamental tone of a plane
vibrating membrane. There we used function symmetrization—a transplanta-
tion, going from the membrane D under study to the circular membrane D∗

having same area. From any function on D, a function on D∗ was constructed.
Then the key ingredient (besides Fubini’s theorem and a change of variable)
was the isoperimetric inequality for plane curves.

Bérard, Besson & Gallot 1985 [139] enact a double generalization of the
same ideas. First we symmetrize the whole heat kernel as a function (which
depends on three variables). Second we use the result on the isoperimetric
profile obtained in theorem 114 on page 319 which needs precisely a lower
bound on Ricci curvature and diameter. The transplantation here goes from
M to a sphere whose radius is precisely defined as a function of inf Ricci, the
dimension and the diameter. It is then clear that on a manifold of negative
Ricci curvature, the comparison sphere cannot be optimal.

The proof is then concluded by expensive and technical details. In partic-
ular it uses the maximum principle for parabolic partial differential equations
(because the heat equation is parabolic). Time is taken in account as follows.
The heat equation for the symmetrized kernel becomes an ordinary differen-
tial equation and one then applies Sturm–Liouville theory, in some sense as
for Jacobi fields in §3.2. One can find this technique in Bandle 1980 [109].
Details of the above results can be found in chapter V of Bérard 1986 [135]
or in Berger 1985 [163].

Brownian motion on Riemannian manifolds is very closely related to the
heat equation. The “propagation speed” of Brownian motion “is the Ricci
curvature.” The reader will enjoy Stroock 1996 [1164], Elworthy 1988 [489],
and Pinsky 1990 [1029, 1028].

9.8 The Wave Equation: The Gaps

Put together, the bounds from theorems 172 on the preceding page and 164
on page 386 frame the λk between two asymptotic curves. This is reasonable
control, but does not say much about how the eigenvalues are distributed.
Questions can be asked about the “jumps,” about the evenness of the distri-
bution, and more simply about the gaps. The formulas 9.15 on page 391 for
the spectrum of the spheres and the KPn show spectra which are not evenly
distributed, since they are concentrated in intervals. The heat equation is not
a deep enough tool to get information on the gaps—we need to analyze the
wave equation on our Riemannian manifold.

This is like climbing Jacob’s ladder. To get information on the manifolds
“downstairs” we have to travel to the unit tangent bundle UM and to work
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0

0

Fig. 9.7. Spectral gaps

with distributions. Downstairs, a function only has a gradient, but a distribu-
tion on UM has a wavefront, which is nothing but the set of its directional sin-
gularities. The first result is that under time evolution the wave front evolves
exactly by the action of the geodesic flow: “the waves (the light) travel along
geodesics.” We cannot say more about the wave equation, it will need an
entire book. Today this topic is called microlocal analysis. It involves subtle
notions such as Fourier integral operators and canonical transformations. To
our knowledge, there are no “popular” expositions of microlocal analysis; the
most picturesque, and closest to Riemannian geometry, is that of Guillemin &
Sternberg 1977 [670]. The four volumes of Hörmander 1983 [735, 736, 737, 738]
are complete and encyclopedic (get the second edition of volume I); Tréves
1980-82 [1198, 1199] is also very informative. The wave kernel∑

k

cos
(√

λkt
)

φk(x)φk(y)

is no longer a function (only a distribution) but in exchange it carries much
more information. It can also be remarked that microlocal analysis involves a
lot a symplectic geometry, which takes place in T ∗M , the cotangent bundle. It
is better to ignore the fact that (thanks to the Riemannian structure) T ∗M is
canonically isomorphic to TM (see §15.2). One also works with the canonical
contact structure on the unit tangent bundle UM (which is Sasakian): see
page 56 of Sakai 1996 [1085].

The following result is part of a very general theory which applies to any
elliptic operator on a compact manifold; we employ it here only to the Laplace
operator.

Theorem 173 (Hörmander 1968 [734]) The number N(λ) of eigenvalues
smaller than λ obeys the asymptotic law

N(λ) =
Vol(M)β(d)

(2π)d
λd/2 + O

(
λ(d−1)/2

)
It should be mentioned that such a result had been obtained in Avakumović
1956 [90] in three dimensions using a technical study of the parametrix. The
immediate corollary (by the very definition of a “capital O” and elementary
calculus) is the one we are after:
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Theorem 174 For any Riemannian manifold M there is a constant CM such
that for any real numbers a and b with b−a large enough, the set of eigenvalues
λ of the Laplacian in the interval [a, b] satisfies

#
{√

λ ∈ [a, b]
}

> CM (b − a)ad .

Note that such gap results cannot be too general; think of theorem 186 on
page 415 to the effect that there is always a Riemannian manifold whose
spectrum is any chosen finite subset of the real numbers.

For the geometer there is major drawback in Hörmander’s result. The way
the constant is found in Hörmander’s proof is not constructive; the geometry
of the Riemannian manifold does not come in. But we would like to be able to
estimate C(M, g) as a function of the geometric invariants of (M, g). At the
moment there is no such result obtained by working with the wave equation
on a Riemannian manifold. But the following recent result is to be found in
section 6 9

10 of Gromov 1996 [631]. The proof is extremely intricate, and uses
the Kac–Feynman–Kato inequality. This formula bounds the spectrum of any
elliptic operator on any bundle on a Riemannian manifold with the spectrum
downstairs of the manifold itself, and was always used the other way around.
But Gromov looks at suitable bundles over a compact Riemannian manifold
and uses various tools from Vafa–Witten, Bochner–Lichnerowicz and Atiyah–
Singer. See chapter §14.2 for a brief survey of those tools. Using that incredibly
high climb up Jacob’s ladder one has:

Theorem 175 (Gromov 1996 [631]) In any odd dimensional Riemannian
manifold whose sectional curvature satisfies

|K| ≤ 1

and whose injectivity radius is larger than 1, the spectral gaps are controlled:

#
{√

λ ∈ [a, b]
}

> Cd(b − a)d Vol(M)

for any positive real numbers a, b such that with

b > a + C′
d

where Cd and C′
d are universal constants in the dimension d.

We leave the reader to use appropriate scaling to replace Cd by a constant
depending on sup |K| and Inj (M). Let us remark that some geometric control
is required in view of theorem 186 on page 415. It seems to be an interesting
question to prove the above result by working only with the wave equation
“down” on the manifold itself. Note also that one knows more (but not ev-
erything) about the distribution of the spectrum on the real line for certain
special manifolds; see §9.13.
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9.9 The Wave Equation: Spectrum and Geodesic Flow

In the pioneering paper Balian & Bloch 1972 [99], which we have discussed in
§§1.8.6, the authors suspected a relation between the spectrum of a plane do-
main and its length spectrum.4 The fact that compact plane domains have a
boundary rendered this study difficult. This is one reason why people turned
first to compact Riemannian manifolds (without boundary of course). We
speak now about general Riemannian manifolds; the special case of space
forms will be taken care of in §9.13. Relations between the spectrum (of func-
tions) and the length spectrum will be met again in §9.12. For flat tori, we
met a perfect link between the spectra furnished by the Poisson formula 9.14
on page 389 So the problem is to find, if possible, various generalizations of
this formula.

For the general case, the first result was Colin de Verdière 1973 [389], but
the proof was very tricky, using the heat kernel and the stationary phase tech-
nique. Soon after it was realized that the wave equation is the more powerful
and elegant technique: Chazarain 1974 [327] and Duistermaat & Guillemin
1975 [465]. This yielded:

Theorem 176 For any Riemannian manifold M the series∑
i

cos
(√

λit
)

defines a distribution whose singular support is contained (besides the value 0)
in the set of the lengths L of the periodic geodesics of M . For a generic Rie-
mannian manifold, this singular support is a sum of distributions TL, with L
ranging over lengths of periodic geodesics, and where each TL has support lo-
cated in a small neighborhood of L. Moreover each TL can be expressed with the
sole help of the Poincaré return map (see the definition 10.4.3.2 on page 469)
associated to the periodic geodesics of length equal to L and the holonomy map
(the effect of parallel transport) along these geodesics.

Here is a very primitive explanation for theorem 176; it is not even an idea
of a proof but just help for the reader who needs to visualize things to get
some grasp of them. We look at a surface and, like throwing a stone in a pond,
look for the wave generated by this action. The picture in figure 9.8 on the
following page shows what is happening at the beginning: no problem occurs
at small distances, but as in §§9.7.2 we might expect trouble at the cut locus.
Two waves meeting transversally generate only nice interferences—this has
been known for a long time. But the wave interferences are different when the
two waves come one against the other in exactly opposite directions; this will
be the case for any periodic geodesic. If moreover their common frequency is
4 Recall that the length spectrum of a plane domain is the set of lengths of its
periodic (billiard or light) trajectories.
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interference

a periodic geodesic

Fig. 9.8. (a) A periodic geodesic (b) Interference

of the form 2πnL, where n is any integer and L is the length of the periodic
geodesic under consideration, then we will have (probably) a resonance or,
say, a tidal wave. This is the cause of singularities in the series above. Note
that this does not happen for geodesic loops—they do not produce enough
resonance.

We come back to more standard mathematical notation. First, there is a
kind of reciprocal of the formula 9.15 on page 391:

Theorem 177 (Colin de Verdière 1979 [391] and Duistermaat &
Guillemin 1975 [465]) If all the geodesics of a compact Riemannian mani-
fold M are periodic with common length equal to L then for k large enough
one has the inclusion

Spec (M) ⊂
⋂
k∈N

[
2π

L

(
k +

α

4

)2

− M,
2π

L

(
k +

α

4

)2

+ M

]
and moreover the number of eigenvalues in every one of these intervals is
polynomial in k.

We will see in §§10.10.2 the significance of the α which can only equal 0, 1, 3,
or 7 (the reader can—and should—think of the KP

n).
The end of theorem 176 on the preceding page was very imprecise about

the Poincaré and holonomy maps and in particular was only passing from the
singularity of TL to the Poincaré map. Recall that TL was defined in theorem
176 on the previous page. Further recall that this Poincaré map has to be
viewed in the unit tangent bundle UM (at some starting point) and is the
differential at the origin of the return map after going once around a periodic
geodesic. After various partial answers, strong results became available only
recently in Guillemin 1993 [665] and 1996 [666]. In those works, the singularity
of TL is completely determined by the Poincaré map, this being done in terms
of the so-called Birkhoff canonical form. This is moreover carried out for a
general elliptic linear differential operator, with the periodic geodesics being
replaced by the periodic bicharacteristics.
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Fig. 9.9. (a) The Poincaré map works in UM |γ⊥ (b) The holonomy map works in
(γ′)⊥

Our information about the gaps and relations with periodic geodesics (for
general manifolds, see §9.13 for special manifolds) is still quite meager. Look-
ing again at the picture in figure 9.6 on page 397, one can consider N(λ) as a
step function. Not only the repartition, but also the jumps are of interest. The
common belief today is that those jumps are related in some way yet to be
discovered to the length of the periodic geodesics (this set of lengths is called
the length spectrum). This belief was initiated in Balian & Bloch 1972 [99].
But today we are still missing formal results. In exchange, there are many
numerical computations, mainly done by theoretical physicists. This because
they are extremely interested in the the semiclassical limit (see more about
this on page 376). Recent numerical experiments and thoughts about them
can be found in Sarnak 1995 [1095], Luo & Sarnak 1994 [885], Luo & Sar-
nak 1995 [886], Rudnick & Sarnak 1996 [1074] and the bibliographies of those
articles.

The most baffling case will be seen in §§9.13.2; it is the case of negative
curvature space forms. The idea is that we know that those forms are chaotic
in the good sense: the geodesic flow is very ergodic, the behavior of peri-
odic geodesics and of the geodesic flow are extremely well understood. Briefly
speaking, the geodesic flow is extremely evenly distributed in the phase space
UM . Because of theorem 176 on page 405, one would expect that the eigen-
values are evenly distributed as a subset of the reals. The answer should be
that the spectrum looks like the eigenvalues of a random Gaussian symmetric
matrix. This major question is almost completely open today; see §§9.13.2.
There is a good result on the distribution of the eigenfunctions; see theorem
185 on page 412.

Question 178 What is N(λ) for a generic Riemannian manifold? Is it in

o
(
λ(d−1)/2

)
instead of the extreme

O
(
λ(d−1)/2

)
?
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We know only of the following intermediate result:

Theorem 179 (Bérard 1977 [132]) If a compact Riemannian manifold has
no conjugate points or has nonpositive sectional curvature then as λ → ∞

N(λ) =
Vol(M)β(d)

(2π)d
λd/2 + O

(
λ(d−1)/2

log λ

)
Note 9.9.0.1 (Quasimodes) An interesting link between the spectrum and
the periodic geodesics is that of the quasimodes. The story started in Babich
& Lazutkin 1967 [95] and is far from being finished today, remaining quite
mysterious; see Colin de Verdière 1977 [390]. Briefly speaking, to one given
periodic geodesic (satisfying certain conditions), one can associate a series of
numbers which approach quite a few eigenvalues. The idea of the proof is to
build up approximate solutions of the wave equation which will propagate
along the geodesic.

Question 180 Are they many cases for which one can obtain the whole spec-
trum in this fashion?

The answer is that this possibility is exceptional and happens only when the
geodesic flow is integrable. In general, the hyperbolic zones between the KAM
tori will yield a contradiction. The entire book Lazutkin 1993 [852] is devoted
to this topic. �

Note 9.9.0.2 For scars, see §§§ 9.13.2.1 on page 426. �

9.10 The First Eigenvalue

9.10.1 λ1 and Ricci Curvature

The first nonzero eigenvalue λ1 is of essential importance. It controls the
Dirichlet quotient of functions of mean value zero, and it also controls reso-
nances. Indirectly it controls even the pure metric geometry of the manifold—
via the distance functions—as seen in Colding’s formula 77 on page 264. Again
lower bounds are the true prize; upper bounds can be useful but definitely are
less useful and much easier to get. We now present results which are not simply
a special case of theorems 164 on page 386 or 172 on page 401.

The first result on λ1 to our knowledge is the following which is hidden on
page 135 of Lichnerowicz 1958 [865] and used there to study transformation
groups of Riemannian manifolds.

Theorem 181 (Lichnerowicz [865]) If the Ricci curvature is larger than
or equal to d − 1 (that of the standard sphere of dimension d) then λ1 is at
least as large as the λ1 of the sphere, namely d. Moreover equality happens
only for manifolds isometric to the sphere.
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The proof is beautifully simple, based on Bochner’s formula theorem 346
on page 595 (or equation 15.8 on page 707), applied to the 1-form which is
the differential df of the first eigenfunction f . This df is not harmonic but

Δf = λ1f

is the trace of the Hessian
Ddf = Hess f .

Bochner’s formula as applied to df becomes, after integration over the mani-
fold and using Stokes’ theorem:

0 =
∫

M

‖Hess f‖2 − λ1

∫
M

‖df‖2 + intM Ricci(df, df)

The proof is concluded by using Newton’s inequality

‖Hess f‖2 ≥ (Δf)2

d

since after diagonalization at a point,

‖Hess f‖2 = a2
1 + · · · + a2

d

and
(Df)2 = (a1 + · · · + ad)

2
.

The equality is obtained quite easily tracing back each inequality, and ap-
peared first in Obata 1962 [971] (also see Cheng 1975 [362]). This result should
be compared with Myers’ theorem 63 on page 245. We will come back to this
in §§12.2.5. The general result of theorem 172 on page 401 as applied only
to λ1 is an improvement of theorem 181 on the facing page since it involves
moreover the diameter (think for example of real projective space). But its
main source of interest is that it can be applied when the Ricci curvature is
nonnegative or negative.

For those who love Riemannian pinching, we mention Croke 1982 [413] for
pinching λ1, and the recent Petersen 1999 [1020].

9.10.2 Cheeger’s Constant

A somewhat intermediate result between Lichnerowicz’s theorem 181 on the
preceding page and theorem 172 on page 401 is based on Cheeger’s constant
hc introduced on page 315.

Theorem 182 (Cheeger 1970 [329]) On any compact Riemannian mani-
fold

λ1 >
1
4
h2

c .
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It was proved in Buser 1978 [291] that this inequality is optimal, but equality
never occurs for a smooth metric. For more on this and the role of λ1, see
§§9.13.1. There is a huge literature on λ1 but still it seems that there has never
been any practical application to various questions concerning “vibrations of
great structures,” or “nondestructive and noninvasive tests.” There is a relation
obviously, but vibration today is largely an experimental area of mechanical
engineering. Bell casters have always used tests of the sound of a bell to check
for possible cracks; see Bourguignon 1986 [238].

9.10.3 λ1 and Volume; Surfaces and Multiplicity

Despite theorem 164 on page 386 (which used Ricci curvature and volume),
there cannot exist an upper bound involving only the volume. This was proven
in Dodziuk 1993 [453], by simply building up suitable examples (of course of
larger and larger diameter, and this only for dimension larger than or equal
to 3). The question was raised because the case of surfaces is exceptional. In
fact:

Theorem 183 (Hersch, 1970) The first three eigenvalues of any Rieman-
nian metric on the sphere S2 obey the inequality

1
λ1

+
1
λ2

+
1
λ3

≥ 3
8π

Area
(
S2, g

)
with equality only for the standard sphere. In particular

λ1 <
8π

3
1

Area (S2, g)
.

The proof is beautiful. It mixes three facts

1. the minimax principle of §§9.4.1,
2. the fact that the Dirichlet quotient of a surface is invariant under confor-

mal change and finally
3. the fact that the conformal group of S2 is large enough to transform any

density on the sphere into a one whose center of mass is the origin.

For other compact surfaces, various authors found an upper bound in-
volving only the area, with a constant depending on the genus. The optimal
constant is still a pending problem. On this topic recent references can be
found in the bibliographies of Dodziuk 1993 [453] and Nadirashvili 1996 [964].

The question of the highest possible multiplicity of λ1 is also interesting for
surfaces. Discard higher dimensions, thanks to the Colin de Verdière result 186
on page 415 to the effect that, starting in dimension three, any finite subset of
the reals—including multiplicities—can always be realized as the beginning
of the spectrum of a suitable Riemannian manifold. But for surfaces, the
multiplicity of λ1 is bounded with the genus of the surface. Results are optimal
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m'

m
initial center 
of mass

Fig. 9.10. Under radial conformal transformations sending all but one point into
it, one can cover the whole ball with the initial center of mass

today for the sphere (triple) and the torus (sextuple). Optimal constants are
still to be discovered for other surfaces. There is definitely a relation between
this multiplicity and the chromatic number of the surface; see the definition
on page 415.

To prove such an upper bound, one relies on the structure of the set of
nodal lines, i.e. the set where an eigenfunction vanishes. Except at a finite set
of singular points, the zero set is made up of regular curves. More important
is that at singular points the curves meet with a set of tangents which are
the directions of the diagonals of a regular polygon. Using this result of Bers
the proof is concluded with arguments of algebraic topology; references are
Besson 1980 [187], Yang & Yau 1980 [1289].

9.10.4 Kähler Manifolds

Mathematicians never stop asking questions. For example, can we have an
upper bound on the first eigenvalue depending only on the volume when the
manifold is “special”? Considering the geometric holonomy hierarchy intro-
duced in chapter 13, the case to look at is that of Kähler manifolds (see
§13.6). Indeed it is natural to wonder about the general spectrum of a Kähler
manifold. One answer is the following extension to CPn of Hersch’s theorem
183 on the preceding page for S2:

Theorem 184 (Bourguignon, Li & Yau 1994 [245]) For any Rieman-
nian metric g on CPn

λ1 ≤ (n + 1)πn/n!
Vol (CP

n, g)
.

We recall (see §§9.5.4 and §§§7.1.1.2) that the volume of the canonical metric
of CPn is
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Vol (CP
n,Fubini–Study) = πn/n!

and its first eigenvalue is n + 1. For the proof, the conformal group of the
sphere is replaced here by the group of all biholomorphic transformations of
CP

n. In Bourguignon, Li & Yau 1994 [245] and Gromov 1992 [630] one will
find generalizations of this result to various algebraic manifolds, and to the
whole spectrum. For the big picture of the subject, it is important to remark
that the spectrum is a robust invariant, while being Kähler is not: see note
9.4.1.1 on page 385 and §13.6 and §14.6.

The extremely important case of “Riemann surfaces”, that is to say of
constant curvature -1, whether or not compact, will be studied at large in
§§9.13.1. In the spirit of §9.12, we are far from being able to recognize the
spectra of Kähler manifolds.

9.11 Results on Eigenfunctions

9.11.1 Distribution of the Eigenfunctions

It seems hopeless to search for any general result valid for “any” Riemannian
manifold. But one can hope for a regular distribution of the eigenfunctions
when the manifold is generic (in any sense). A regular distribution would
be one for which in any domain D of the manifold and for eigenfunctions
with larger and larger eigenvalue, one finds the integral of the square of that
function over that domain is in a proportion to the integral over the whole
manifold which is closer and closer to the ratio of the volumes of D and M .
To our knowledge there is not a single result in that direction; compare with
the periodic geodesic result in §§10.3.5.

But if the manifold is “ergodic” (see §§10.5.1), then there are partial re-
sults. The conjecture is that ergodicity implies an even distribution of the
eigenvalues and the eigenfunctions. Concerning the eigenfunctions one has
only:

Theorem 185 For an ergodic Riemannian manifold M , there is a sequence

{i(k)}

of integers, of full density in the integers, such that for every D ⊂ M with
eigenfunctions φi(k) being normalized:

lim
k→∞

∫
M

φ2
i(k) =

Vol(D)
Vol(M)

.

Measure theory aficionados would prefer to write this as

lim
k→∞

φ2
i(k)dVM = dVM



9.11 Results on Eigenfunctions 413

Full density means that the number of points in question in [0, λ], compared to
the whole spectrum, has a ratio closer and closer to one when λ goes to infinity.
The latest general reference on this topic is Colin de Verdière 1985 [392] for
our compact case, which completed the attempt of Shnirel′man 1973 [1137].
For the noncompact see Zelditch 1987 [1302] and Zelditch 1992 [1303]. The
proofs involve a deep theorem of Yuri V. Egorov on Fourier integral operators
and belong therefore to microlocal analysis. So again, the wave equation is
used even if it disappears in the final statement. For the very special case
of space forms of negative curvature, see further references in §9.13, but the
results are still incomplete today.

9.11.2 Volume of the Nodal Hypersurfaces

Another way to look at regularity of eigenfunctions is to study their nodal
hypersurfaces, namely the subsets of the manifold where they vanish. When
the manifold is a surface, these subsets are curves. A reasonable behaviour
to expect is that the volume of the φ−1

λ (0) will grow as λ → ∞, with some
asymptotic order. The reader can check on examples (flat tori being the sim-
plest) and also looking at spherical harmonics (see §§9.5.2 and §§9.5.3) that
an eigenfunction with eigenvalue λ behaves like a polynomial of degree

√
λ. If

this is more or less true for any compact Riemannian manifold, then one will
have Vol

(
φ−1

λ (0)
)

roughly behaving like
√

λ. It was conjectured by Yau in
1982 that for every Riemannian manifold M with Riemannian metric g there
are constants c = c(g) and c′ = c′(g) such that

c
√

λ ≤ Vol
(
φ−1

λ (0)
)
≤ c′

√
λ (9.25)

for every eigenvalue λ. The intuitive idea behind Yau’s conjecture was that
eigenfunctions for λ behave roughly like polynomials of degree

√
λ, which is the

case for the standard sphere for which the eigenfunctions are the restrictions to
the sphere of the harmonic polynomials of Euclidean space. After the partial
result of Brüning 1978 [266], this was proven in Donnelly & Fefferman 1988
[461]. The volume is to be understood as the (d − 1) dimensional Hausdorff
measure to be sure to make sense. The proof is extremely hard, and involves
various results from analysis. One needs to know the local behaviour of the
eigenfunctions, their local sup norm and the distribution of their singular
zeroes. Another basic fact is the analyticity of the eigenfunctions of an elliptic
operator (here the Laplacian). And the proof tells us even more about the
eigenfunctions.

The story does not end here for at least two reasons. The first in that the
proof we need the analyticity of both the manifold and the metric. But for
the geometer the major drawback is that the two constants c(g) and c′(g) are
unknown. They come from an atlas and its coordinate changes. The geometer
would like to be able to express c(g) and c′(g) as functions of Riemannian
invariants of (M, g) (and of course the cheapest possible ones). We know of no
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work on this. Let us mention a recent paper addressing noncompact manifolds:
Donnelly & Fefferman 1992 [462]. Also see Savo 2001 [1101].

9.11.3 Distribution of the Nodal Hypersurfaces

Figure 1.98 on page 91 shows the extraordinary regularity of a nodal line.
There is some reason to believe that when the geodesic flow of a Riemannian
manifold is ergodic, the nodal sets are evenly distributed. In saying that nodal
lines are evenly distributed, we mean something like asking that given any
domain D ⊂ M

lim
λ→∞

Vol
(
D ∩ φ−1

λ (0)
)

Vol
(
φ−1

λ (0)
) =

Vol(D)
Vol(M)

.

Today there are only numerical experiments. Nodal sets might also be con-
nected to periodic geodesics by some mysterious phenomenon called scarring;
see figure 1.100 on page 93. For a discussion of scars, we refer to Sarnak 1995
[1095], also see §§§9.13.2.1.

9.12 Inverse Problems

The general scheme is to try to understand the map

(M, g) �→ Spec (M, g)

from Riemannian structures on a manifold M to the set of all discrete subsets
of the positive real line:

Spec : RS (M) →
{
discrete subsets of R+

}
By a Riemannian structure, recall that we mean a point in the quotient set
of the set of Riemannian metrics by all possible diffeomorphisms. We do not
want to distinguish between two isometric Riemannian manifolds (metrics).
The first question is to determine the image of this map, the second is about
its inverse: is it one-to-one, and if not what can be said about the preimages
of various points in the image?

9.12.1 The Nature of the Image

We are far today from being able to guess a sufficient condition for a subset
of the reals to be realizable as the spectrum of some Riemannian manifold;
we know only of Omori 1983 [973]. Of course all of the results above can be
viewed as necessary conditions, the most typical one being Weyl’s asymptotic
as made precise in Hörmander’s result 173 on page 403, as well as its gap
corollary. But for a finite set to be realized as the beginning of a spectrum
(including imposed multiplicities) there is no obstruction:
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Theorem 186 (Colin de Verdière 1987 [393]) For any compact mani-
fold M of dimension larger than or equal to 3 and for any finite subset of
the positive real numbers, indexed with finite multiplicities, there exists some
Riemannian structure on M whose spectrum begins with that subset.

The proof is nice. It consists in putting points on the manifold, considering
them as oscillators with the desired frequency and multiplicity. Then one
joins them by nonintersecting curves, building up a tubular neighborhood of
that structure and controlling everything to keep this finite spectrum. One
can also see this result as first finding a (finite) graph whose spectrum for
its standard graph Laplacian is the desired finite piece under consideration,
and then playing some kind of “tunnel effect” along the edges. Technically
the multiplicities give troubles, which can finally be controlled by a subtle
transversality argument. But for infinite subsets of the reals, the question of
sufficient conditions seems completely open; however see note 9.12.1.1 on the
following page.

X1

X4

X2

X3

Z(1,2)

X1

X3

X2

Z(1,2)

Z(1,3)

Z(2,3)

X:

Fig. 9.11. Colin de Verdière’s proof that one can choose any finite part of the
spectrum of the Laplacian

It is when joining the points by nonintersecting curves that the condition
on the dimension appears. This is of course impossible without extra condi-
tions when the dimension is 2, since then some of those curves can be forced
to meet. In fact this fits perfectly with the restriction on the multiplicity of λ1

that we met in §§9.10.3. For the interested reader we mention here that pur-
suing this topic in the case of surfaces Colin de Verdière discovered recently a
fascinating application to electrical circuits: see Colin de Verdière 1996 [396].
He was also led to make the following conjecture. For a compact surface M
define its chromatic number Chrom(M) as the largest integer N so that there
is an embedding into M of the complete graph with N vertices.
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Conjecture 187 (Colin de Verdière) For any surface M , the highest pos-
sible multiplicity of λ1 of any Riemannian metric is equal to Chrom(M)− 1.

See page 601 of Colin de Verdière 1987 [393] for more on that.

Note 9.12.1.1 In theorem 167 on page 400 we saw a dramatic improvement
of Colin de Verdière’s results. The scheme for Lohkamp’s proof is as follows:
modify Colin de Verdière’s construction by suitable “attachments of metrics”.
These constructions are hard and subtle—in particular the author uses Besi-
covitch’s coverings and the technique of “crushed ice”. �

9.12.2 Inverse Problems: Nonuniqueness

We have been studying direct problems: I know the manifold and some of its
invariants. What can I say about the spectrum? Inverse problems have the
form: I know various things about the spectrum, what can I recover of the
metric? The first question is the uniqueness: are two isospectral manifolds
necessarily isometric ?

The first time the author heard about this question was in letter written
to him by Leon Green around 1960. In this letter, Green also remarked on
an almost straightforward fact: if one knows not only the eigenvalues but
also the eigenfunctions, then one knows the metric (two such manifolds can
be called homowave or homophonic). This is because the completeness of
the eigenfunctions (see §§9.3.3) implies knowledge of the Laplacian acting on
functions, and then from the explicit formula of the Laplacian in coordinates,
one recovers immediately the gij .

The isospectral question was a strong incentive in the sixties. In the case
of Riemann surfaces, uniqueness was conjectured in Gel′fand 1962 [553]. For
plane domains, we already met this question in §§1.8.4. The first counterex-
ample came in Milnor 1964 [922]. It consists in two tori of dimension 16 with
exactly the same spectra. By the results of §§9.5.2, we know the spectrum of
a flat torus as soon as we know the lattice defining it. Then two lattices Λ and
Λ′ in Rd will yield isospectral tori if and only if the number Nm of points in
them having a given norm m is always the same. The set of these numbers is
completely encoded in the theta series of the lattices. Namely one defines the
theta series of the lattice Λ by

ΘΛ(z) =
∑
x∈Λ

qx·x =
∑
m

Nmqm (9.26)

(where q = exp(πiz)) defined for suitable values of the complex variable z.
These functions have been exhaustively studied for purposes of number theory.
An excellent presentation is 2.3 (pages 44–47) of Conway & Sloane 1999 [403].
There one will found out how to compute the theta series of various lattices,
depending how they are defined.
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Milnor’s examples were the two lattices called E8×E8 and E16. The lattice
E8 is the famous lattice attached to the exceptional Lie group denoted also by
E8. It can be defined as the set of tuples (n1, . . . , n8) where all ni are integers
or integers plus 1/2 and with the extra condition that

∑
i ni is even. The

lattice E16 is then simple to construct. What is subtle is to compute their
theta series and to show that they are identical; a very good exposition of
this is to be found in Serre 1973 [1125]. Checking that they are not isometric
(congruent) is the trivial part.

It is a easy exercise to show that isospectral 2-dimensional lattices are
congruent (i.e. they can be rotated into one another in the Euclidean sense).
Various people found isospectral flat tori of various dimensions. We refer the
reader to Conway & Sloane 1999 [403] for them. The dimension can go as
low as four. For this dimension one will find on page xxi of the preface (of
the second edition) of Conway & Sloane unbelievably simple examples, de-
pending moreover on four parameters. The case of dimension 3 was finally
solved positively in Schiemann [1103]; indeed one only needs to know that the
eigenvalues are not too large.

Then people got more and more examples of different types. Using number
theory (quaternionic number fields) Gel′fand’s 1962 conjecture of uniqueness
for Riemann surfaces was disproven in Vignéras 1980 [1216]. Thereafter the
field blew up so much that we just give few references permitting the reader
to go back to all of them. The landmark Sunada 1985 [1168] put things in the
right context, at least when considering space forms obtained by quotienting
by discrete subgroups. One then finds a sufficient algebraic condition between
two such groups to yield isospectral quotients. Then Gordon 1993 [575] gives
very geometric methods (using transplantation techniques, see Bérard 1989
[137] which can also be used as a survey) to construct isospectral Riemann
surfaces. It is interesting to note that the plane isospectral domains, mentioned
in §§1.8.4, were found using isospectral abstract Riemann surfaces with no
boundary (compare figures 9.12 on the following page and 1.94 on page 86).

It is a natural instinct to search for more and more general examples; the
preceding ones were all space forms. People found locally homogeneous spaces,
then nonhomogeneous ones and even one parameter deformations; see Bérard
& Webb 1995 [141], Gordon & Webb 1994 [578], Gordon 1994 [575], Gordon
2000 [576], Gordon & Mao 1994 [577], Gornet 1998 [582], and Schueth 1999
[1112].

In Szabo 2001 [1174], very interesting pairs of isospectral metrics are con-
structed on spheres; they can be made as close to the canonical metric as you
like.

We will see in §9.14 that there is a natural Laplacian for exterior differential
forms of any degree, hence associated spectra for each degree. We naturally
meet the question of obtaining isospectral, nonisometric metrics at the level of
differential forms. Today one has examples of different types. For instance, the
counterexamples with flat tori are always isospectral for differential forms of
any degree, since the eigenvalues for differential forms coincide trivially with
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Fig. 9.12. Constructing isospectral plane domains out of isospectral surfaces of
constant curvature

those for numerical functions, with only the multiplicities being multiplied
by the fixed constant which is the binomial number

(
dim M

p

)
. In the opposite

direction, one will find in Gornet 1996 [581] examples distinguishing between
isospectrality for functions and for differential forms.

9.12.3 Inverse Problems: Finiteness, Compactness

Since the geometry with a given spectrum is not unique, we can still try to
have information on the possible geometries, i.e. sets of Riemannian structures
having the same spectrum. How large can these sets be? Do they have any
kind of structure, in particular are they “finite dimensional” in any reasonable
sense or “compact”? To our knowledge, the finite dimensionality is a completely
open problem (unlike the case of Einstein metrics as we will see in theorem
286 on page 531). The infinitesimal isospectral deformation equations in the
space of metrics look hopeless; we will just meet a few exceptions.

But there is a nice result for surfaces:

Theorem 188 (Osgood, Phillips & Sarnak [979]) For any choice of spec-
trum, the set of Riemannian structures (i.e. Riemannian metrics up to dif-
feomorphism) with that spectrum is compact.

The proof is hard but two of its ingredients are of great importance for other
purposes. The first is the collection of curvature terms which appear in the
asymptotic expansion of the heat kernel; see theorem 165 on page 393. The
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second ingredient is new for us: it is the determinant of the Laplacian. For-
mally, it is defined as

det Δ =
∏

i

λi (9.27)

Approached naively, as it is written, this product is not convergent, but one
can define it anyway, using various regularization tricks. The most common
trick is to take its logarithm: consider the ζ function of the spectrum:

ζ(s) =
∑

i

1
λs

i

and compute formally ζ′(0). You will find the determinant. All the effort now
focuses on rendering this analysis rigorous. We refer to Osgood, Phillips &
Sarnak [979] for details of the proof and also for references on this determi-
nant. Recall that we mentioned on page 86 a compactness result that was
obtained for isospectral plane domains. This determinant is also used for an
extraordinary proof of the conformal representation theorem 70 on page 254
using Ricci flow; see references and the current state of affairs in Chow [378].

The use of the determinant cannot be avoided. The heat invariants are
certainly not enough. This can be seen simply because all of these invariants
coincide in the case of constant curvature metrics, as already remarked in note
9.7.2.1 on page 399. On the other hand the Teichmüller space of all Riemann
surfaces of a given genus is not compact. In particular, (at least for higher
genus) one cannot prove compactness inside the set of metrics conformal to a
given metric, a case which is much simpler since it only involves scalar func-
tions instead of metric tensors; namely they involve only the Gauss curvature
K and its various iterated Laplacians ΔmK. But in two dimensions, exten-
sive study shows that the heat invariants are simple enough when they are
controlled by the determinant of Δ. For this determinant as a functional of
Riemannian metrics, see Sarnak [1096].

The above proof suggests the conjecture that, in two dimensions, there
can be only a finite number of metrics isospectral to a given metric. This is
certainly false in higher dimensions, since there are one-parameter isospectral
deformations.

The compactness of higher dimensional isospectral sets is open. One reason
is that the proof above involves controlling the nature of the heat invariants,
which are so much simpler for surfaces. However there are good partial results,
in dimensions 3 and 4: Osgood, Phillips & Sarnak [980], Anderson [41] and
Brooks, Perry & Petersen [264]. For topological finiteness of isospectral sets,
see Brooks, Perry, & Petersen [263, 262]. Also see Gordon 2000 [576].

9.12.4 Uniqueness and Rigidity Results

We already saw on page 399 the uniqueness of the spectra of the standard
spheres up to dimension 6. The analogous question is open for higher dimen-
sions. But there are good results:
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Theorem 189 (Guillemin & Kazhdan 1980 [667] and Croke & Shara-
futdinov [422]) On compact manifolds of negative curvature, there are no
isospectral deformations.

The proof for surfaces is beautiful and we explain it in some detail because
it seems to us that this technique could be used more widely. It is a kind
of double Fourier analysis leading to a contradiction. There are three steps.
One looks at the derivative of a deformation of metrics on the unit tangent
bundle UM . This bundle has fibers which are circles, which leads to Fourier
analysis for functions UM → R. If the Fourier subspaces are called Hi then
the deformation function

t : UM → R

belongs to the direct sum
H−2 ⊕ H0 ⊕ H2

because Riemannian metrics are quadratic forms. Now one invokes theorem
176 on page 405 to the effect that the lengths of periodic geodesics are pre-
served under our deformation since it is isospectral. A periodic geodesic when
lifted up to UM is now a periodic trajectory of the geodesic flow. An easy
computation, the “first variation formula for changes of metric,” shows that
the integral of the deformation function t is zero along any periodic geodesic.
But a manifold of negative curvature has a lot of periodic geodesics, dense in
the best possible sense (see §10.6). This explains (although it is not a proof)
a result of Livtsic to the effect that there exists a new function s : UM → R

such that t is the derivative of s along the geodesic flow. It remains now to
look at how the geodesic vector field behaves with respect to the Fourier anal-
ysis above. The negativity of the curvature implies that differentiating in G
lowers the rank in Fourier analysis. In particular s′ = t implies that

s ∈ H1 ⊕ H0 ⊕ H−1 .

But s also should be like t in H2 ⊕ H0 ⊕ H−2 and this finishes the proof: t
has to be constant along the fibers. The proof of Croke & Sharafutdinov 1997
[422] for higher dimensions is somewhat different.

9.12.4.1 Vignéras Surfaces

The Vignéras examples of surfaces with the same spectrum appeared in Vi-
gnéras 1980 [1216] The recent basic uniqueness and rigidity result Besson,
Courtois & Gallot 1995 [189], which will be addressed in detail in theorem
251 on page 484, has already had so many applications that its authors are
conjecturing (see 9.20, page 780) a result which would be in some sense the
best possible:

Conjecture 190 Isospectral, compact, negatively curved manifolds of dimen-
sion larger than 2 are isometric.
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Question 191 Is isospectrality a nongeneric phenomena? Otherwise stated:
are generic Riemannian manifolds spectrally isolated (solitude)?

A third remark concerns the length spectrum, i.e. the set of length of peri-
odic geodesics. From theorem 176 on page 405 one is certain that isospectral-
ity implies coincidence of the length spectra; but Vignéras counterexamples
in §§§9.12.4.1 show that different Riemann surfaces can have the same length
spectrum. In §10.11 we will see that is not the case for the marked length spec-
trum. This is true for example for negative curvature manifolds of dimension
higher than 2 and supports the conjecture just presented: see 9.14 in Besson,
Courtois & Gallot 1995 [189].

9.13 Special Cases

9.13.1 Riemann Surfaces

By a Riemann surface we understand a compact orientable surface of constant
curvature −1. In our hierarchy they are the negative space forms of dimension
2. This means we exclude the sphere and the torus.

Riemann surfaces have been studied since Riemann in great detail, for
their intrinsic interest. They appeared originally in complex variable theory,
in algebraic geometry and in number theory. Recently they became a favourite
object for theoretical physicists, in particular in string theory. It is then not
surprising that we have many strong results for them, including for their spec-
tra. The book Buser 1992 [292] is a very complete exposition of the subject
at that date. A more recent survey is Buser 1997 [293]. We just note that
in Buser 1992 [292] the question of the regularity (randomness) of the spec-
trum and that of the eigenfunctions (compare with §9.9 and theorem 185 on
page 412) are still not well understood, we will discuss them in §§9.13.2.

The first basic fact is that for Riemann surfaces theorem 176 on page 405
can be inverted. What theorem 176 says is that the function spectrum of the
Laplacian determines the length spectrum (the set of lengths of the periodic
geodesics). But the converse is false in general; one needs much more that
the length spectrum, namely essentially the Poincaré map and the parallel
transport of periodic geodesics. But in the case of Riemann surfaces, the
parallel transport is always the identity since the dimension is two and we
have orientability. The Poincaré map is also known because the curvature is
constant. This explains (but of course does not prove):

Theorem 192 (Huber 1959 [745, 747]) On a Riemann surface, the spec-
trum of the Laplace operator on functions determines the length spectrum and
vice versa.

The proof is based on a formula for Riemann surfaces which is a generaliza-
tion of the Poisson formula 9.14 on page 389 which was valid for flat tori. The
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formula computes the heat kernel by a suitable summation formula involving
the length spectrum. It is possible simply because there is an explicit formula
for the heat kernel K∗ of the total (noncompact!) hyperbolic space Hypd, and
in particular for Hyp2. Our surface is a quotient of Hyp2 by a discrete group
of hyperbolic isometries. It is enough to know the primitive elements of this
group. Being without fixed points, they have to consist in a gliding along an
hyperbolic line (called the axis and denoted by γ). The length of the gliding
corresponds exactly to the length of a periodic geodesic downstairs. As a ma-
trix of the group Isom

(
Hyp2

)
that length is exactly the trace of this matrix.

This explains the name “trace formula.” This formula of Huber is a particular
case of Selberg’s trace formula which we will meet below. The proof is finished
by remarking that the heat kernel downstairs is a suitable summation of the
type

K =
∑

γ

K∗ (x, γy)

for the axis γ above; details are to be found in chapter 9 of Buser 1992 [292].
We now present to the reader a choice of results that we find especially

appealing; most of them are in the book Buser 1992 [292]. The heuristic possi-
bility of these results comes from Huber’s theorem, as explained in the preface
of the book:

This theorem does not show only that the eigenvalues contain a
great deal of geometric information, it also indicates that spectral prob-
lems may be approached by geometric methods. . . .

Buser 1992 [292]

These geometric methods rest essentially on the fact that the set of all Rie-
mannian surface structures on a given orientable surface of genus larger than
1 can be encoded in the lengths of the sides of the hexagonal pantaloon hy-
perbolic plane pieces and the twisting angles when one glues them together
as was done in figure 4.10 on page 157. The study is still not too clear con-
ceptually in Buser’s book. But in Buser 1997 [293] the author made a decisive
step. He succeeded, at least for a very large class of Riemann surfaces, to find
the surface itself directly and explicitly from the spectrum. This means that
the complete geometry is encoded in the spectrum. Those surfaces are called
solitary because they don’t have nonisometric isospectral companions.

We start with the eigenvalues called small.What is important for a Rie-
mann surface is not only λ1 and its position with respect to 1/4, but also
the set of λ’s which are in ]0, 1/4] (called small). Why 1/4 comes into the
picture cannot be explained briefly; for details we refer the reader to Buser’s
book. From it we extract this. In writing the heat kernel as a summation, it is
convenient to write the eigenvalues λ = r2 + 1/4, so that the associated r are
imaginary when λ is below 1/4. A very heuristic reason is that in hyperbolic
geometry, the modular domain is the one in figure 6.36 on page 255 and that

1/4 = (1/2)2 .
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Let us just recall that this modular domain is the quotient of the hyper-
bolic plane by the isometries whose matrix is integral. It might be the most
important object of all mathematics, as its is connected with function anal-
ysis, complex variables, number theory, etc. Remember in this context the
Riemann hypothesis for the zeros of the ζ function which “should” be all on
the line s = 1/2.

Today the situation for small eigenvalues is satisfactory on one hand but
on the other hand some conjectures are still open. Let us also mention that
the small eigenvalues play a basic role in the refined version of the asymptotic
expansion for the counting function of the length spectrum, as will be seen in
theorem 205 on page 447. If we denote by Mγ the set of all Riemann surfaces
of a given genus γ then

Theorem 193 (Buser 1992 [292] 8.1.1) For any γ and any surface in
Mγ,

λ4γ−2 > 1/4 .

Theorem 194 (Buser 1992 [292] 8.1.2) For any γ and any integer n
(think large) and for any ε > 0 (think of ε as small) there are elements of Mγ

with
λn ≤ 1/4 + ε .

Together these two statements look surprising. There is a universal bound for
the number of eigenvalues in [0, 1/4] but not in any [0, 1/4 + ε]. A geometric
reason is offered on page 211 of Buser’s book; it mixes isoperimetric consider-
ations for hyperbolic hexagons and the fact that Mγ is never compact—see
just below.

Theorem 195 (Buser 1992 [292] 8.1.3) For any ε > 0 there is a genus γ
and a surface Mγ with

λ2γ−3 < ε .

Theorem 196 (Buser 1992 [292] 8.1.4) There is a universal constant c >
0 so that for any γ and any surface in Mγ

λ2γ−2 > c .

Although the conjectured value for c is in fact 1/4, today the best known c
is around 10−12. There are many other results for small eigenvalues; see the
Notes at the end of chapter 8 of Buser’s book.

We turn now to the isospectral question. Recall that there are examples
of isospectral but nonisometric Riemann surfaces: see §§9.12.2 and also that
there is a general compactness result: see §§9.12.3. But in the present case we
also have finiteness:
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Theorem 197 (Buser 1992 [292] 13.1.1) For a given genus γ there are
at most exp

(
720γ2

)
pairwise nonisometric isospectral Riemann surfaces.

The last topic we will discuss in this section is Wolpert’s theorem (1977-79).
It says that for Riemann surfaces a certain finite part of the length spectrum
determines the whole spectrum. In Buser’s book the precise statement is the-
orem 10.1.4. Then Buser extends the theorem to the function spectrum as
follows:

Theorem 198 (Buser 1992 [292] 14.10.1) For any ε > 0 and any γ there
is a universal constant univ(ε, γ) such that if two Riemann surfaces S and
S′ of the same genus γ both with injectivity radius larger than ε verify
λn(S) = λn(S′) for every n < univ(ε, γ) then they are isospectral for their
whole spectrum.

Some remarks are now in order. First, the lower bound on the injectivity
radius cannot be avoided. The noncompactness of Mγ is directly linked with
the fact that the injectivity radius can go to zero. Conversely, compactness
when there is lower bound on the injectivity radius is a very special case of
the general compactness theorem which we will meet in complete detail in
§§12.4.2 and also theorem 376 on page 621.

Second, the original proofs (both for the length and the function spectrum)
were extremely expensive, using in particular the theory of real analytic vari-
eties. Recently in Buser 1997 [293] the results on solitary surfaces (mentioned
above) were used to give a much simpler proof of theorems like Wolpert’s.
Also see Schmutz 1996 [1106].

9.13.2 Space Forms

The preceding section concerned space forms of dimension two and of negative
curvature. The case of zero or positive curvature was treated in section §§9.7.2
where we saw that the standard sphere and the standard RP2 are determined
by their spectrum, as are flat tori. This was done using the asymptotic ex-
pansion of the heat kernel.

Looking now at higher dimensions, we saw in §§9.12.2 the state of affairs
for flat tori and for spheres, circumstances being particularly unsatisfactory
for spheres. Let us turn now to the compact manifolds of negative constant
sectional curvature. This is very special case among manifolds of negative cur-
vature. We saw at large in §9.11 that there are some results on the distribution
of eigenvalues and of eigenfunctions for ergodic manifolds. But also that those
results were very partial, the basic questions being completely open. Since neg-
ative curvature manifolds are ergodic in a very strong sense (see §10.6) and
since we will see extremely satisfying results for them in §10.8 for the length
spectrum with optimality for the space forms, it is then natural to expect
for negative curvature space forms much stronger results than for the general



9.13 Special Cases 425

ergodic or negatively curved ones. This was the case for Riemann surfaces as
seen just above to some respect, in particular for the small eigenvalues.

There is a theoretical answer to every question concerning spectra of neg-
atively curved Riemann surfaces, namely Selberg’s trace formula, which in
dimension 2 gives back part of Huber’s theorem 192 on page 421. For higher
dimensions, see Bunke & Olbrich [279].

These questions are under very intense study today. The hope is to use
tools from number theory, since these space forms are mostly found by arith-
metic means; see §§6.6.2. The tools are typically modular functions (for the
flat tori in §§9.12.2 they were theta functions). Strong incentives come to this
study from mathematical physics, in particular in what is called the semiclas-
sical limit (see more on page 376) and in the present situation from quantum
chaos.

There is no general picture arising from the various results obtained up to
know. We already said in §9.9 that experts disagree, comparing mathematical
results and numerical experiments (including dimension 2). We mention only
references: Sarnak 1995 [1095], Luo & Sarnak 1994 [885], Luo & Sarnak 1995
[886], Rudnick & Sarnak 1996 [1074]. One should also of course look at the
bibliographies of those. Today a conjecture is the following: there are numer-
ical experiments from which it seems that the distribution of eigenvalues is
not even for some arithmetic Riemann surfaces. That is, the distribution is
not a Gaussian orthogonal ensemble (GOE), i.e. the set of the eigenvalues
of a random N × N symmetric matrix as N → ∞, with the whole business
being rescaled to agree with Weyl’s asymptotic. This negative statement was
mathematically proven in Luo & Sarnak 1995 [886]. In figure 9.13 we see a
picture taken from Sarnak 1995 [1095], comparing, for plane regions, arith-
metic and the nonarithmetic spectra (see more on page 292 for the definition
of arithmeticity in abstraction, but it is not really too much different for plane
domains, and the plane domains are accessible to numerical computations).
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Fig. 9.13. (a) Σ2 for a nonarithmetic triangle (b) Σ2(L) for an arithmetic triangle

However the geodesic flow is ergodic. Today it is believed that the distri-
bution will be GOE for generic Riemann surfaces. And to explain the reason
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why arithmetic forms are exceptional, one should remember what was said in
§9.9, namely that the jumps in the spectrum are linked with the structure of
the length spectrum. But one knows that the length spectrum of an arithmetic
form is very “degenerate” in the sense that the lengths are given by suitable
integers—the reason for this is that we saw that the length shifts of gliding
hyperbolic isometries are represented by the trace of an integral entry matrix.
The asymptotic exponential behavior (see equation 9.19 on page 396) then
forces all of these periodic geodesics to have very large multiplicities, hence
huge jumps in the length spectrum.

In these results, precise descriptions of many quantities are studied for
those space forms, not only the L2 norms but also the sup norm. More: the
behaviour of integrals like ∫

M

P (φi1 , . . . , φik
) dVM

for various polynomials P of degree k and their asymptotic behavior when
one or more of the eigenvalues goes to infinity is related to possible scarring,
which is the next problem we have to consider.

9.13.2.1 Scars

This is linked with the question of whether there are “scars.” In some numerical
experiments, people found that the nodal lines of some surfaces were, in some
sense, accumulating along periodic geodesics. But in Sarnak 1995 [1095] it
is proven that this can never happen for arithmetic space forms (for some
suitable definition of what a scar is). A picture of a scar in a planar region
is presented in figure 1.100 on page 93. This is an amusing paradox: the
arithmetic case implies more regularity, and at the time it is a less common
case (in the realm of space forms). The general state of affairs still divides
experts, since scarring today is only purely experimental and because the
definition of scars varies between authors; see Rudnick & Sarnak 1996 [1074],
Shimizu & Shudo 1995 [1132] and the references there.

9.14 The Spectrum of Exterior Differential Forms

From equation 9.3 on page 379 we know that there is a sensible notion of
Laplacian for exterior forms of any degree p from p = 0 (for functions) to the
dimension p = d = dimM . This time the kernel of Δ, i.e. the set of differential
forms ω such that Δω = 0, is more subtle than for functions. From theorem
405 on page 665 we know that those forms, called harmonic, build up in
degree p a real vector space isomorphic through the de Rham isomorphism
34 on page 171 to the cohomology space Hp (M, R), hence of dimension equal
to bp (M), the real p Betti number of M . This for the kernel of Δ. But Δ on
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p-forms also has a spectrum, namely the set of its eigenvalues. We explain now
how much information can be extracted, with our present state of knowledge,
from the knowledge of the spectra for all degrees; we will denote by λp,k the
eigenvalues of exterior degree p.

There are today only two outcomes of spectral considerations for exterior
forms which have a Riemannian geometry flavor; the Kähler case is richer
and was briefly alluded to separately in §§9.10.4 above. First with McKean
& Singer 1967 [910] a firework was ignited and in its brightness one could
see with far greater clarity. We describe it briefly—a complete reference is
Gilkey 1995 [564] (this second edition is very up to date). Roughly speaking
what happens is the following. We look back at the asymptotic expansion in
theorem 165 on page 393 for

∑
k exp (−λkt) with the Uk integrals, which are

universal in the curvature tensor (this will mean always including its covariant
derivatives). People were concerned that Ud/2 is not a topological invariant
as soon as d > 2. Since differential forms also have a canonical Laplacian, we
can do the same (it is not too much more expensive and appeared first in
Gaffney 1958 [536]) with differential forms and get the pointwise invariants,
denoted by up,k(x) arising in the tk term in the asymptotic expansions of the
corresponding heat kernels. They are still universal in the curvature, but differ
in general with various p. Their integrals over M will be denoted by capitals
Up,k and the eigenvalues of the p-spectrum by {λp,k}. Now let us perform the
alternate double sum ∑

p,k

(−1)p exp (−λp,kt) .

Because both of the operators d and d∗ commute with the Laplacian Δ, they
transform eigenfunctions into eigenfunctions. The Hodge decomposition the-
orem 406 on page 665 of any form into a harmonic part, a closed part and a
coclosed part shows that into this alternate summation everything will dis-
appear except at the harmonic level: there the zero eigenvalue λp,0 has a
multiplicity equal to the pth Betti number bp (M). So in the alternating sum
of the corresponding asymptotic expansions everything should also disappear
for any k except when k = d/2. Hence the alternate pointwise sums∑

(−1)pup,k(x) ,

when integrated on M and adding after multiplication by tk, will yield iden-
tically the constant ∑

(−1)pbp = χ(M).

This explains McKean and Singer’s dream: a fantastic pointwise cancellation
might well take place in the pointwise up,k functions to yield the forced inte-
grated cancellation. This was indeed proven in Patodi 1971 [1005].

The rebound was taken first in Gilkey 1973 [562] and then in Atiyah, Bott
& Patodi 1973 [76, 77]. One studies Patodi’s cancellation result, but puts it
in successively more general bundles equipped with suitable elliptic opera-
tors, including the Dirac operator on spinors and uses Gilkey’s results. It then



428 9 Spectrum of the Laplacian

turns out that those structures are plentiful enough to yield all elliptic op-
erators, giving a new proof of the index theorem in §§14.2.3. It is important
to use the theory of invariants “à la Gilkey” and the functorial behaviour of
indices. The harvest is large: Hirzebruch’s signature theorem 417 on page 717
can be obtained this way and of course this new insight yields many results
in differential topology. This domain is still blooming; see the two books al-
ready mentioned. One point in this philosophy is that “pointwise cancellation”
shows that local index theorems can exist. But Riemannian geometry is quite
far away. However here comes the second byproduct of the rebound: the η
invariant.

The main trick in the founding papers Atiyah, Patodi & Singer 1975–1976
[81, 82, 83] is to obtain the characteristic χ(M), not as the alternating sum
of the zero eigenvalues of the various Laplacians on the exterior forms of a
given degree on (M, g), but in one shot as the index of the first order operator
B = d− d∗ acting on the total set of exterior forms on M (one just has to be
careful to put the right signs in front of B). The eigenvalues of Δ are of the
form λ2 where λ is an eigenvalue of B but different signs are possible here.
Hence the function

η(s) =
∑
λ�=0

sign(λ)|λ|s

makes sense for suitable s. In an strict sense (as usual for this kind of function)
η(0) is not defined, but with some extra work one can still make sense out of
it. It is then called the η invariant of (M, g) and measures the “spectral asym-
metry.” This invariant is especially interesting for manifolds with boundary.
For a 4k dimensional manifold M ′ with a 4k − 1 dimensional boundary M
(and provided that locally at the boundary the metric is a product) one can
express the signature σ(M ′) by the integral formula

σ (M ′) =
∫

M ′
L(R) − η(M)

where L is the universal curvature integrand for the signature of Hirzebruch’s
theorem 417 on page 717. This invariant has many applications when looking
at the subtle problem of the nonexistence of pointwise invariant integration
formulas for the “signatures.” Besides the original papers we refer the reader
to Atiyah, Donnelly & Singer 1983 [78, 79] and Gilkey 1995 [564]. There are
also relations with the secondary characteristic classes below, also with Â
genus when spinors are in view. The η invariant for 3-manifolds is applied in
deriving the isolation result of Rong 1993 [1064] for the minimal volume in
dimension 4 seen in equation 11.6 on page 518. The η invariant is also used in
number theory: see Atiyah, Donnelly & Singer 1983 [78]. For η invariants of
noncompact manifolds, see Hitchin 1996 [721]; for gluing and the η invariant
see Bunke 1995 [278].

Another invariant based on the spectral analysis of differential forms is
to be found in Ray & Singer 1971 [1052]. The result is that from the linear
combination
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dim M∑
p=0

(−1)ppζ′p(0)

of the ζ′p(0) value of the ζp functions associated to the spectrum of the dif-
ferential forms of all degrees p, one can recover a topological invariant. They
conjectured that their invariant should coincide with the topological invariant
called the Reidemeister torsion and gave some evidence for that. The conjec-
ture was proven independently in Müller 1978 [952] and Cheeger 1979 [332].
The proof is very involved and was one of Cheeger’s motivation for the study
of the spectrum of certain singular manifolds, see Cheeger 1983 [333].

Do not hope that the knowledge of the differential form spectrum for all
p from 0 to the dimension will determine the metric; in Milnor’s examples
discussed on page 417 all of those spectra coincide. For various questions
concerning isospectrality of differential forms, see Gornet 1998 [582]. See Lott
2000 [881] for a subtle study of collapsing and the behaviour of differential
forms.


