Skip to main content

Evaluation of the Therapeutic Utility of Phosphodiesterase 5A Inhibition in the mdx Mouse Model of Duchenne Muscular Dystrophy

  • Chapter
  • First Online:
Phosphodiesterases as Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 204))

Abstract

Duchenne muscular dystrophy (DMD) is a devastating and ultimately fatal disease characterized by progressive muscle wasting and weakness. DMD is caused by the absence of a functional dystrophin protein, which in turn leads to reduced expression and mislocalization of dystrophin-associated proteins including neuronal nitric oxide (NO) synthase mu (nNOSμ). Disruption of nNOSμ signaling results in muscle fatigue and unopposed sympathetic vasoconstriction during exercise, thereby increasing contraction-induced damage in dystrophin-deficient muscles. The loss of normal nNOSμ signaling during exercise is central to the vascular dysfunction proposed over 40 years ago to be an important pathogenic mechanism in DMD. Recent preclinical studies focused on circumventing defective nNOSμ signaling in dystrophic skeletal and cardiac muscle by inhibiting phosphodiesterase 5A (PDE5A) have shown promising results. This review addresses nNOS signaling in normal and dystrophin-deficient muscles and the potential of PDE5A inhibition as a therapeutic approach for the treatment of cardiovascular deficits in DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo CM, Dai DF, Percival JM, Minami E, Willis MS, Patrucco E, Froehner SC, Beavo JA (2010) Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 107:19079-19083

    Google Scholar 

  • Adams ME, Kramarcy N, Krall SP, Rossi SG, Rotundo RL, Sealock R, Froehner SC (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol 150:1385–1398

    Article  PubMed  CAS  Google Scholar 

  • Adams ME, Mueller HA, Froehner SC (2001) In vivo requirement of the alpha-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J Cell Biol 155:113–122

    Article  PubMed  CAS  Google Scholar 

  • Asai A, Sahani N, Kaneki M, Ouchi Y, Martyn JA, Yasuhara SE (2007) Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phospho-diesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS One 2:e806

    Article  PubMed  Google Scholar 

  • Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339

    PubMed  CAS  Google Scholar 

  • Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL, Heymes C (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110:2368–2375

    Article  PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Bia BL, Cassidy PJ, Young ME, Rafael JA, Leighton B, Davies KE, Radda GK, Clarke K (1999) Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy. J Mol Cell Cardiol 31:1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Bloom TJ (2002) Cyclic nucleotide phosphodiesterase isozymes expressed in mouse skeletal muscle. Can J Physiol Pharmacol 80:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Bostick B, Yue Y, Long C, Marschalk N, Fine DM, Chen J, Duan D (2009) Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged mdx mice. Mol Ther 17:253–261

    Article  PubMed  CAS  Google Scholar 

  • Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM (1998) Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res 83:1271–1278

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    Article  PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752

    Article  PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767

    Article  PubMed  CAS  Google Scholar 

  • Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C, DMD Care Considerations Working Group (2009) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

    Article  PubMed  Google Scholar 

  • Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA (2007) Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21:2195–2204

    Article  PubMed  CAS  Google Scholar 

  • Chang WJ, Iannaccone ST, Lau KS, Masters BS, McCabe TJ, McMillan K, Padre RC, Spencer MJ, Tidball JG, Stull JT (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci USA 93:9142–9147

    Article  PubMed  CAS  Google Scholar 

  • Chao DS, Gorospe JR, Brenman JE, Rafael JA, Peters MF, Froehner SC, Hoffman EP, Chamberlain JS, Bredt DS (1996) Selective loss of sarcolemmal nitric oxide synthase in Becker muscular dystrophy. J Exp Med 184:609–618

    Article  PubMed  CAS  Google Scholar 

  • Chao DS, Silvagno F, Xia H, Cornwell TL, Lincoln TM, Bredt DS (1997) Nitric oxide synthase and cyclic GMP-dependent protein kinase concentrated at the neuromuscular endplate. Neuroscience 76:665–672

    Article  PubMed  CAS  Google Scholar 

  • Chenard AA, Becane HM, Tertrain F, de Kermadec JM, Weiss YA (1993) Ventricular arrhythmia in Duchenne muscular dystrophy: prevalence, significance and prognosis. Neuromuscul Disord 3:201–206

    Article  PubMed  CAS  Google Scholar 

  • Chu V, Otero JM, Lopez O, Sullivan MF, Morgan JP, Amende I, Hampton TG (2002) Electrocardiographic findings in mdx mice: a cardiac phenotype of Duchenne muscular dystrophy. Muscle Nerve 26:513–519

    Article  PubMed  Google Scholar 

  • Colussi C, Mozzetta C, Gurtner A, Illi B, Rosati J, Straino S, Ragone G, Pescatori M, Zaccagnini G, Antonini A, Minetti G, Martelli F, Piaggio G, Gallinari P, Steinkuhler C, Clementi E, Dell’Aversana C, Altucci L, Mai A, Capogrossi MC, Puri PL, Gaetano C (2008) HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci USA 105:19183–19187

    Article  PubMed  CAS  Google Scholar 

  • Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401

    Article  PubMed  CAS  Google Scholar 

  • Crosbie RH, Barresi R, Campbell KP (2002) Loss of sarcolemma nNOS in sarcoglycan-deficient muscle. FASEB J 16:1786–1791

    Article  PubMed  CAS  Google Scholar 

  • Danialou G, Comtois AS, Dudley R, Karpati G, Vincent G, Des Rosiers C, Petrof BJ (2001) Dystrophin-deficient cardiomyocytes are abnormally vulnerable to mechanical stress-induced contractile failure and injury. FASEB J 15:1655–1667

    PubMed  CAS  Google Scholar 

  • Das A, Xi L, Kukreja RC (2008) Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem 283:29572–29585

    Article  PubMed  CAS  Google Scholar 

  • Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7:762–773

    Article  PubMed  CAS  Google Scholar 

  • de Kermadec JM, Bécane HM, Chénard A, Tertrain F, Weiss Y (1994) Prevalence of left ventricular systolic dysfunction in Duchenne muscular dystrophy: an echocardiographic study. Am Heart J 127:618–623

    Article  PubMed  Google Scholar 

  • Dellorusso C, Crawford RW, Chamberlain JS, Brooks SV (2001) Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J Muscle Res Cell Motil 22:467–475

    Article  PubMed  Google Scholar 

  • Eagle M, Bourke J, Bullock R, Gibson M, Mehta J, Giddings D, Straub V, Bushby K (2007) Managing Duchenne muscular dystrophy-the additive effect of spinal surgery and home nocturnal ventilation in improving survival. Neuromuscul Disord 17:470–475

    Article  PubMed  Google Scholar 

  • Ervasti JM (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta 1772:108–117

    PubMed  CAS  Google Scholar 

  • Ervasti JM, Campbell KP (1993) Dystrophin and the membrane skeleton. Curr Opin Cell Biol 5:82–87

    Article  PubMed  CAS  Google Scholar 

  • Eu JP, Sun J, Xu L, Stamler JS, Meissner G (2000) The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell 102:499–509

    Article  PubMed  CAS  Google Scholar 

  • Fernhoff NB, Derbyshire ER, Marletta MA (2009) A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci USA 106:21602–21607

    Article  PubMed  CAS  Google Scholar 

  • Finsterer J, Stöllberger C (2003) The heart in human dystrophinopathies. Cardiology 99:1–19

    Article  PubMed  Google Scholar 

  • Firestein BL, Bredt DS (1999) Interaction of neuronal nitric-oxide synthase and phosphofructokinase-M. J Biol Chem 274:10545–10550

    Article  PubMed  CAS  Google Scholar 

  • Frankel KA, Rosser RJ (1976) The pathology of the heart in progressive muscular dystrophy: epimyocardial fibrosis. Hum Pathol 7:375–386

    Article  PubMed  CAS  Google Scholar 

  • Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284:812–815

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Bernhard D, Lukowski R, Weinmeister P (2009) cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 191:137–162

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Bach JR, Minami R (1999) Cardioprotection for Duchenne’s muscular dystrophy. Am Heart J 137:895–902

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Kimura S, Ozasa S, Matsukura M, Ikezawa M, Yoshioka K, Ueno H, Suzuki M, Araki K, Yamamura K, Miwa T, Dickson G, Thomas GD, Miike T (2006) Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice. Hum Mol Genet 15:2266–2275

    Article  PubMed  CAS  Google Scholar 

  • Jerusalem F, Engel AG, Gomez MR (1974) Duchenne dystrophy I. morphometric study of the muscle microvasculature. Brain 97:115–122

    Article  PubMed  CAS  Google Scholar 

  • Kameya S, Miyagoe Y, Nonaka I, Ikemoto T, Endo M, Hanaoka K, Nabeshima Y, Takeda S (1999) alpha1-syntrophin gene disruption results in the absence of neuronal-type nitric-oxide synthase at the sarcolemma but does not induce muscle degeneration. J Biol Chem 274:2193–2200

    Article  PubMed  CAS  Google Scholar 

  • Khairallah M, Khairallah R, Young ME, Dyck JR, Petrof BJ, Des Rosiers C (2007) Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43:119–1129

    Article  PubMed  CAS  Google Scholar 

  • Khairallah M, Khairallah RJ, Young ME, Allen BG, Gillis MA, Danialou G, Deschepper CF, Petrof BJ, Des Rosiers C (2008) Sildenafil and cardiomyocyte-specific cGMP signaling prevent cardiomyopathic changes associated with dystrophin deficiency. Proc Natl Acad Sci USA 105:7028–7033

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA, Campbell KP (2008) Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456:511–515

    Article  PubMed  CAS  Google Scholar 

  • Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–228

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119:624–635

    Article  PubMed  CAS  Google Scholar 

  • Lukowski R, Rybalkin SD, Loga F, Leiss V, Beavo JA, Hofmann F (2010) Cardiac hypertrophy is not amplified by deletion of cGMP-dependent kinase-I in cardiomyocytes. Proc Natl Acad Sci USA 107:5646–5651

    Article  PubMed  CAS  Google Scholar 

  • Manzur AY, Kuntzer T, Pike M, Swan A (2008) Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev 1:CD003725

    Google Scholar 

  • Markham LW, Michelfelder EC, Border WL, Khoury PR, Spicer RL, Wong BL, Benson DW, Cripe LH (2006) Abnormalities of diastolic function precede dilated ardiomyopathy associated with Duchenne muscular dystrophy. J Am Soc Echocardiogr 19:865–871

    Article  PubMed  Google Scholar 

  • McConell GK, Wadley GD (2008) Potential role of nitric oxide in contraction-stimulated glucose uptake and mitochondrial biogenesis in skeletal muscle. Clin Exp Pharmacol Physiol 35:1488–1492

    PubMed  CAS  Google Scholar 

  • McConell GK, Bradley SJ, Stephens TJ, Canny BJ, Kingwell BA, Lee-Young RS (2007) Skeletal muscle nNOS mu protein content is increased by exercise training in humans. Am J Physiol Regul Integr Comp Physiol 293:R821–R828

    Article  PubMed  CAS  Google Scholar 

  • Mendell JR, Engel WK, Derrer EC (1971) Duchenne muscular dystrophy: functional ischemia reproduces its characteristic lesions. Science 172:1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Mergia E, Koesling D, Friebe A (2009) Genetic mouse models of the NO receptor ‘soluble’ guanylyl cyclases. Handb Exp Pharmacol 191:33–46

    Article  PubMed  CAS  Google Scholar 

  • Moriuchi T, Kagawa N, Mukoyama M, Hizawa K (1993) Autopsy analyses of the muscular dystrophies Tokushima. J Exp Med 40:83–93

    CAS  Google Scholar 

  • Nagayama T, Zhang M, Hsu S, Takimoto E, Kass DA (2008) Sustained soluble guanylate cyclase stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by sildenafil. J Pharmacol Exp Ther 326:380–387

    Article  PubMed  CAS  Google Scholar 

  • Percival JM, Adams ME, Froehner SC (2006) Syntrophin: a molecular adaptor conferring a signaling role to the dystrophin-associated protein complex. In: Winder SJ (ed) Molecular mechanisms of muscular dystrophies. Landes Bioscience, TX

    Google Scholar 

  • Percival JM, Anderson KN, Gregorevic P, Chamberlain JS, Froehner SC (2008) Functional deficits in nNOSmu-deficient skeletal muscle: myopathy in nNOS knockout mice. PLoS ONE 3:e3387

    Article  PubMed  Google Scholar 

  • Percival JM, Anderson KN, Huang PL, Adams ME, Froehner SC (2010) Golgi and sarcolemmal nNOS isozymes differentially regulate contraction-induced fatigue and vasoconstriction in exercising skeletal muscle. J Clin Invest 120:816–826

    Article  PubMed  CAS  Google Scholar 

  • Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714

    Article  PubMed  CAS  Google Scholar 

  • Quinlan JG, Hahn HS, Wong BL, Lorenz JN, Wenisch AS, Levin LS (2004) Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings. Neuromuscul Disord 14:491–496

    Article  PubMed  Google Scholar 

  • Reffelmann T, Kloner RA (2009) Phosphodiesterase 5 inhibitors: are they cardioprotective? Cardiovasc Res 83:204–12

    Article  PubMed  CAS  Google Scholar 

  • Sander M, Chavoshan B, Harris SA, Iannaccone ST, Stull JT, Thomas GD, Victor RG (2000) Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci USA 97:13818–13823

    Article  PubMed  CAS  Google Scholar 

  • Saraiva RM, Minhas KM, Raju SV, Barouch LA, Pitz E, Schuleri KH, Vandegaer K, Li D, Hare JM (2005) Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 112:3415–3422

    Article  PubMed  CAS  Google Scholar 

  • Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA, Casadei B (2003) Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92:e52–e59

    Article  PubMed  CAS  Google Scholar 

  • Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119:2656–2662

    Article  PubMed  CAS  Google Scholar 

  • Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, Ohler A, Paolocci N, Tomaselli GF, Hare JM, Kass DA (2001) Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 15:1718–1726

    Article  PubMed  CAS  Google Scholar 

  • Silvagno F, Xia H, Bredt DS (1996) Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 271:11204–11208

    Article  PubMed  CAS  Google Scholar 

  • Spurney CF, Knoblach S, Pistilli EE, Nagaraju K, Martin GR, Hoffman EP (2008) Dystrophin-deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord 18:371–381

    Article  PubMed  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–359

    Article  PubMed  Google Scholar 

  • Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Motohashi N, Uezumi A, Fukada S, Yoshimura T, Itoyama Y, Aoki M, Miyagoe-Suzuki Y, Takeda S (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117:2468–2476

    Article  PubMed  CAS  Google Scholar 

  • Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222

    Article  PubMed  CAS  Google Scholar 

  • Thomas GD, Victor RG (1998) Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. J Physiol 506:817–826

    Article  PubMed  CAS  Google Scholar 

  • Thomas GD, Sander M, Lau KS, Huang PL, Stull JT, Victor RG (1998) Impaired metabolic modulation of alpha-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci USA 95:15090–15095

    Article  PubMed  CAS  Google Scholar 

  • Thomas GD, Shaul PW, Yuhanna IS, Froehner SC, Adams ME (2003) Vasomodulation by skeletal muscle-derived nitric oxide requires alpha-syntrophin-mediated sarcolemmal localization of neuronal nitric oxide synthase. Circ Res 92:554–560

    Article  PubMed  CAS  Google Scholar 

  • Thrush PT, Allen HD, Viollet L, Mendell JR (2009) Re-examination of the electrocardiogram in boys with Duchenne muscular dystrophy and correlation with its dilated cardiomyopathy. Am J Cardiol 103:262–265

    Article  PubMed  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2004) Expression of a NOS transgene in dystrophin-deficient muscle reduces muscle membrane damage without increasing the expression of membrane-associated cytoskeletal proteins. Mol Genet Metab 82:312–320

    Article  PubMed  CAS  Google Scholar 

  • Townsend D, Yasuda S, Li S, Chamberlain JS, Metzger JM (2008) Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol Ther 16:832–835

    Article  PubMed  CAS  Google Scholar 

  • Vandebrouck C, Duport G, Cognard C, Raymond G (2001) Cationic channels in normal and dystrophic human myotubes. Neuromuscul Disord 11:72–79

    Article  PubMed  CAS  Google Scholar 

  • Vandeput F, Krall J, Ockaili R, Salloum FN, Florio V, Corbin JD, Francis SH, Kukreja RC, Movsesian MA (2009) cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. J Pharmacol Exp Ther 330:884–891

    Article  PubMed  CAS  Google Scholar 

  • Wallis RM, Corbin JD, Francis SH, Ellis P (1999) Tissue distribution of phospho-diesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol 83:3C–12C

    Article  PubMed  CAS  Google Scholar 

  • Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, Wener AD, Wang G, Bevan SC, Newton DC, Marsden PA (2005) Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest 115:3128–3139

    Article  PubMed  CAS  Google Scholar 

  • Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155:123–131

    Article  PubMed  CAS  Google Scholar 

  • Wehling-Henricks M, Jordan MC, Roos KP, Deng B, Tidball JG (2005) Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium. Hum Mol Genet 14:1921–1933

    Article  PubMed  CAS  Google Scholar 

  • Wehling-Henricks M, Oltmann M, Rinaldi C, Myung KH, Tidball JG (2009) Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphoructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy. Hum Mol Genet 18:3439–3451

    Article  PubMed  CAS  Google Scholar 

  • Whitehead NP, Streamer M, Lusambili LI, Sachs F, Allen DG (2006) Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice. Neuromuscul Disord 16:845–854

    Article  PubMed  Google Scholar 

  • Willmann R, Possekel S, Dubach-Powell J, Meier T, Ruegg MA (2009) Mammalian animal models for Duchenne muscular dystrophy. Neuromuscul Disord 19:241–249

    Article  PubMed  Google Scholar 

  • Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Li J, Spurney CF, Sali A, Guerron AD, Nagaraju K, Doran T, Lu P, Xiao X, Lu QL (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 105:14814–14819

    Article  PubMed  CAS  Google Scholar 

  • Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Zhang MH, Sears CE, Emanuel K, Redwood C, El-Armouche A, Kranias EG, Casadei B (2008) Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res 102:242–249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thanks members of the Froehner lab and Dr Kimberley Craven for helpful discussions and suggestions. Research related to the role of nNOS and PDE5A inhibitors in our laboratories is supported by the Muscular Dystrophy Association (JMP), Charlie’s Fund (SCF and JAB), Parent Project Muscular Dystrophy (JMP and SCF), NIH grants NS33145 (SCF), NS59514 (SCF and JAB), and AR056221 (SCF and JAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. Percival .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Percival, J.M., Adamo, C.M., Beavo, J.A., Froehner, S.C. (2011). Evaluation of the Therapeutic Utility of Phosphodiesterase 5A Inhibition in the mdx Mouse Model of Duchenne Muscular Dystrophy. In: Francis, S., Conti, M., Houslay, M. (eds) Phosphodiesterases as Drug Targets. Handbook of Experimental Pharmacology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17969-3_14

Download citation

Publish with us

Policies and ethics