Skip to main content

Structure and Development of Peyer’s Patches in Humans and Mice

  • Chapter
  • First Online:

Abstract

Peyer’s patches are lymphoid organs situated on the anti-mesenteric side of the mid-intestine. Within the Peyer’s patches, immune responses to intestinal-derived antigens are initiated. In this chapter, we will discuss the structure and function of the Peyer’s patches. In addition, the development of Peyer’s patches during fetal life will be reviewed, with an emphasis on the reciprocal interaction between distinct hematopoietic cell subsets and their stromal environment in the Peyer’s patch anlage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi S, Yoshida H, Honda K, Maki K, Saijo K, Ikuta K, Saito T, Nishikawa SI (1998) Essential role of IL-7 receptor alpha in the formation of Peyer’s patch anlage. Int Immunol 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Adachi S, Yoshida H, Kataoka H, Nishikawa S (1997) Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol 9:507–514

    Article  PubMed  CAS  Google Scholar 

  • Bergqvist P, Gardby E, Stensson A, Bemark M, Lycke NY (2006) Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol 177:7772–7783

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Carlsen HS, Halstensen TS (2006) The B-cell system in inflammatory bowel disease. Adv Exp Med Biol 579:149–167

    Article  PubMed  CAS  Google Scholar 

  • Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunity 28:740–750

    Article  PubMed  CAS  Google Scholar 

  • Chabot S, Wagner JS, Farrant S, Neutra MR (2006) TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J Immunol 176:4275–4283

    PubMed  CAS  Google Scholar 

  • Corr SC, Gahan CC, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52:2–12

    Article  PubMed  CAS  Google Scholar 

  • Crabbe PA, Nash DR, Bazin H, Eyssen H, Heremans JF (1970) Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab Invest 22:448–457

    PubMed  CAS  Google Scholar 

  • Cupedo T, Vondenhoff MF, Heeregrave EJ, De Weerd AE, Jansen W, Jackson DG, Kraal G, Mebius RE (2004) Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. J Immunol 173:2968–2975

    PubMed  CAS  Google Scholar 

  • Cyster JG (2003) Homing of antibody secreting cells. Immunol Rev 194:48–60

    Article  PubMed  CAS  Google Scholar 

  • Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  PubMed  CAS  Google Scholar 

  • Finke D (2009) Induction of intestinal lymphoid tissue formation by intrinsic and extrinsic signals. Semin Immunopathol 31:151–169

    Article  PubMed  Google Scholar 

  • Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J (2002) CD4+CD3 cells induce Peyer’s patch development. Role of a4b1 integrin activation by CXCR5. Immunity 17:363

    Article  PubMed  CAS  Google Scholar 

  • Fotopoulos G, Harari A, Michetti P, Trono D, Pantaleo G, Kraehenbuhl JP (2002) Transepithelial transport of HIV-1 by M cells is receptor-mediated. Proc Natl Acad Sci USA 99:9410–9414

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama S, Kiyono H (2007) Neuroregulator RET initiates Peyer’s-patch tissue genesis. Immunity 26:393–395

    Article  PubMed  CAS  Google Scholar 

  • Gebert A, Rothkotter HJ, Pabst R (1996) M cells in Peyer’s patches of the intestine. Int Rev Cytol 167:91–159

    Article  PubMed  CAS  Google Scholar 

  • Gretz JE, Kaldjian EP, Anderson AO, Shaw S (1996) Commentary: Sophisticated strategies for information encounter in the lymph node: the reticular network as a conduit of soluble information and a highway for cell traffic. J Immunol 157:495–499

    PubMed  CAS  Google Scholar 

  • Griebel PJ, Hein WR (1996) Expanding the role of Peyer’s patches in B-cell ontogeny. Immunol Today 17:30–39

    Article  PubMed  CAS  Google Scholar 

  • Hashi H, Yoshida H, Honda K, Fraser S, Kubo H, Awane M, Takabayashi A, Nakano H, Yamaoka Y, Nishikawa SI (2001) Compartmentalization of Peyer’s patch anlagen before lymphocyte entry. J Immunol 166:3702–3709

    PubMed  CAS  Google Scholar 

  • Kadaoui KA, Corthesy B (2007) Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer’s patches with restriction to mucosal compartment. J Immunol 179:7751–7757

    PubMed  CAS  Google Scholar 

  • Katakai T, Hara T, Lee J-H, Gonda H, Sugai M, Shimizu A (2004a) A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol 16:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Katakai T, Hara T, Sugai M, Gonda H, Shimizu A (2004b) Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med 200:783–795

    Article  PubMed  CAS  Google Scholar 

  • Katakai T, Suto H, Sugai M, Gonda H, Togawa A, Suematsu S, Ebisuno Y, Katagiri K, Kinashi T, Shimizu A (2008) Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J Immunol 181:6189–6200

    PubMed  CAS  Google Scholar 

  • Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, Rho J, Wong BR, Josien R, Kim N, Rennert PD, Choi Y (2000) Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med 192:1467–1478

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K, Harigai M, Fagarasan S, Muramatsu M, Honjo T (2001) A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc Natl Acad Sci USA 98:12620–12623

    Article  PubMed  CAS  Google Scholar 

  • Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  PubMed  CAS  Google Scholar 

  • Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Lycke N, Erlandsson L, Ekman L, Schon K, Leanderson T (1999) Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol 163:913–919

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, Slack E (2007) The functional interactions of commensal bacteria with intestinal secretory IgA. Curr Opin Gastroenterol 23:673–678

    Article  PubMed  CAS  Google Scholar 

  • Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665

    Article  PubMed  CAS  Google Scholar 

  • Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthesy B, Neutra MR (2002) Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol 169:1844–1851

    PubMed  CAS  Google Scholar 

  • Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303

    Article  PubMed  CAS  Google Scholar 

  • Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL (1996) A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3− cells to colonize lymph nodes. Proc Natl Acad Sci USA 93:11019–11024

    Article  PubMed  CAS  Google Scholar 

  • Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R, Acha-Orbea H, Finke D (2007) Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26:643–654

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4:353–362

    Article  PubMed  CAS  Google Scholar 

  • Neutra MR, Frey A, Kraehenbuhl JP (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell 86:345–348

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S, Honda K, Vieira P, Yoshida H (2003) Organogenesis of peripheral lymphoid organs. Immunol Rev 195:72–80

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Togawa A, Wada H, Nishikawa S (2007) Distinct activities of stromal cells involved in the organogenesis of lymph nodes and Peyer’s patches. J Immunol 179:804–811

    PubMed  CAS  Google Scholar 

  • Pappo J, Mahlman RT (1993) Follicle epithelial M cells are a source of interleukin-1 in Peyer’s patches. Immunology 78:505–507

    PubMed  CAS  Google Scholar 

  • Pellas TC, Weiss L (1990) Migration pathways of recirculating murine B cells and CD4+ and CD8+ T lymphocytes. Am J Anat 187:355–373

    Article  PubMed  CAS  Google Scholar 

  • Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288:2369–2373

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Ha SA, Tsuji M, Fagarasan S (2007) Intestinal IgA synthesis: a primitive form of adaptive immunity that regulates microbial communities in the gut. Semin Immunol 19:127–135

    Article  PubMed  CAS  Google Scholar 

  • Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S (2009) Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323:1488–1492

    Article  PubMed  CAS  Google Scholar 

  • Tyrer PC, Ruth Foxwell A, Kyd JM, Otczyk DC, Cripps AW (2007) Receptor mediated targeting of M-cells. Vaccine 25:3204–3209

    Article  PubMed  CAS  Google Scholar 

  • Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, Barlow A, Pachnis V, Kioussis D (2007) Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature 446:547–551

    Article  PubMed  CAS  Google Scholar 

  • Villena A, Zapata A, Rivera-Pomar JM, Barrutia MG, Fonfria J (1983) Structure of the non-lymphoid cells during the postnatal development of the rat lymph nodes. Fibroblastic reticulum cells and interdigitating cells. Cell Tissue Res 229:219–232

    Article  PubMed  CAS  Google Scholar 

  • Wijburg OL, Uren TK, Simpfendorfer K, Johansen FE, Brandtzaeg P, Strugnell RA (2006) Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med 203:21–26

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Kweon MN, Rennert PD, Hiroi T, Fujihashi K, McGhee JR, Kiyono H (2004) Role of gut-associated lymphoreticular tissues in antigen-specific intestinal IgA immunity. J Immunol 173:762–769

    PubMed  CAS  Google Scholar 

  • Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S-I, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S, Maki K, Ikuta K, Nishikawa SI (1999) IL-7 receptor alpha+ CD3(-) cells in the embryonic intestine induces the organizing center of Peyer’s patches. Int Immunol 11:643–655

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, Togawa A, Nishikawa S (2002) Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17:823–833

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kaji M, Takahashi T, van den Berg TK, Dijkstra CD (1995) Host origin of follicular dendritic cells induced in the spleen of SCID mice after transfer of allogeneic lymphocytes. Immunology 84:117–126

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Veiga-Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Cupedo, T., Coles, M.C., Veiga-Fernandes, H. (2011). Structure and Development of Peyer’s Patches in Humans and Mice. In: Balogh, P. (eds) Developmental Biology of Peripheral Lymphoid Organs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14429-5_9

Download citation

Publish with us

Policies and ethics