Skip to main content

The Methanogenic and Eubacterial Endosymbionts of Trimyema

  • Chapter
  • First Online:
Book cover (Endo)symbiotic Methanogenic Archaea

Part of the book series: Microbiology Monographs ((MICROMONO,volume 19))

Abstract

Trimyema ciliates thrive in various anoxic environments in which they prey on bacteria and grow with fermentative metabolisms. Like many anaerobic protozoa, instead of mitochondria, Trimyema possess hydrogenosomes, which are hydrogen-producing, energy-generating organelles characteristic of anaerobic protozoa and fungi. The cytoplasm of Trimyema harbours hydrogenotrophic methanogens that consume the hydrogen produced by these organelles, which confers an energetic advantage to the host ciliate. Symbiotic associations between methanogenic archaea and Trimyema ciliates are thought to be established independently and/or repeatedly in their evolutional history. In addition to methanogenic symbionts, it has been shown that Trimyema compressum houses bacterial symbionts. Although almost nothing is known about the symbionts except for their phylogeny, this intriguing multi-symbiosis would be a good model for investigating symbiotic interactions among bacteria, archaea, and eukaryotes. In this chapter, we summarise the early works and recent progress of studies on Trimyema ciliates, in particular T. compressum, and discuss the nature of this symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JHP (1998) A hydrogenosome with a genome. Nature 396:527–528

    Article  PubMed  CAS  Google Scholar 

  • Augustin H, Foissner W, Adam H (1987) Revision of the genera Acineria, Trimyema and Trochiliopsis (Protozoa, Ciliophora). Bull Br Mus nat Hist (Zool) 52:197–224

    Google Scholar 

  • Baumgartner M, Stetter KO, Foissner W (2002) Morphological, small subunit rRNA, and physiological characterization of Trimyema minutum (Kahl, 1931), an anaerobic ciliate from submarine hydrothermal vents growing from 28°C to 52°C. J Eukaryot Microbiol 49:227–238

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SW, van Hellemond JJ, Ricard G, Huynen M, Tielens AG, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  PubMed  CAS  Google Scholar 

  • Broers CA, Stumm CK, Vogels GD (1991) Axenic cultivation of the anaerobic free-living ciliate Trimyema compressum. J Protozool 38:507–511

    PubMed  CAS  Google Scholar 

  • Cho BC, Park JS, Xu K, Choi JK (2008) Morphology and molecular phylogeny of Trimyema koreanum n. sp., a ciliate from the hypersaline water of a solar saltern. J Eukaryot Microbiol 55:417–426

    Article  PubMed  Google Scholar 

  • Curds CR (1977) Microbial interactions involving protozoa. In: Skinner FA, Shewan JN (eds) Aquatic microbiology. Academic, New York, pp 69–105

    Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    PubMed  CAS  Google Scholar 

  • Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D (1991a) Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Dasytricha ruminantium. J Gen Microbiol 137:1409–1417

    PubMed  CAS  Google Scholar 

  • Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D (1991b) Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl Environ Microbiol 57:1400–1407

    PubMed  CAS  Google Scholar 

  • Ellis JE, Mcintyre PS, Saleh M, Williams AG, Lloyd D (1991c) The influence of ruminal concentrations of O2 and CO2 on fermentative metabolism of the rumen entodiniomorphid ciliate Eudiplodinium maggii. Curr Microbiol 23:245–251

    Article  CAS  Google Scholar 

  • Embley TM, Finlay BJ (1993) Systematic and morphological diversity of endosymbiotic methanogens in anaerobic ciliates. Antonie Leeuwenhoek 64:261–271

    Article  PubMed  Google Scholar 

  • Embley TM, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Thomas RH, Dyal PL (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138:1479–1487

    PubMed  CAS  Google Scholar 

  • Esteban G, Guhl BE, Clarke KJ, Embley TM, Finlay BJ (1993) Cyclidium porcatum n. sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 29:262–270

    PubMed  Google Scholar 

  • Fenchel T (1980) Suspension feeding in ciliated protozoa: functional response and particle size selection. Microb Ecol 6:1–11

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1991) Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host. J Protozool 38:18–22

    Google Scholar 

  • Finlay BJ, Embley TM, Fenchel T (1993) A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J Gen Microbiol 139:371–378

    PubMed  CAS  Google Scholar 

  • Goosen NK, Horemans AMC, Hillebrand SJW, Stumm CK, Vogels GD (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Arch Microbiol 150:165–170

    Article  Google Scholar 

  • Goosen N, Wagener S, Stumm CK (1990a) A comparison of two strains of the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:187–192

    Article  Google Scholar 

  • Goosen NK, van der Drift C, Stumm CK, Vogels CD (1990b) End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiol Lett 69:171–176

    Article  CAS  Google Scholar 

  • Hackstein JHP, Vogels GD (1997) Endosymbiotic interactions in anaerobic protozoa. Antonie Leeuwenhoek 71:151–158

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, de Graaf RM, van Hellemond JJ, Tielens AGM (2008a) Hydrogenosomes of anaerobic ciliates. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Heidelberg, pp 97–112

    Chapter  Google Scholar 

  • Hackstein JHP, Baker SE, van Hellemond JJ, Tielens AGM (2008b) Hydrogenosomes of anaerobic chytrids: an alternative way to adapt to anaerobic environments. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Heidelberg, pp 148–162

    Google Scholar 

  • Holler S, Pfennig N (1991) Fermentation products of the anaerobic ciliate Trimyema compressum in monoxenic cultures. Arch Microbiol 156:327–334

    Article  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105:5555–5560

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2009) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108–1109

    Article  Google Scholar 

  • Lackey JB (1925) Studies on the biology of sewage disposal. N J Agric Exp Sta Bull 417:1–39

    Google Scholar 

  • Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169:397–403

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Shi M, Liao YH, Gao Y, Zhang Z, Wen DH, Wu WZ, An CC (2006) Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion progress. Microb Ecol 51:315–325

    Article  Google Scholar 

  • Moran NA, McLaughlin HJ, Sorek R (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382

    Article  PubMed  CAS  Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    PubMed  Google Scholar 

  • Murase J, Frenzel P (2008) Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol Ecol 65:408–414

    Article  PubMed  CAS  Google Scholar 

  • Nerad TA, Schaffer SA, Small EB, Mangold LA (1995) Trimyema shoalsia sp. n., an anaerobic, microaerotolerant marine ciliate from Appledore Island, Gulf of Maine, USA. Acta Protozool 34:289–298

    Google Scholar 

  • Nes WR, McKean ML (1977) Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore

    Google Scholar 

  • Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci USA 76:847–851

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Hongoh Y, Noda S, Hattori S, Ui S, Ohkuma M (2009) Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11:1007–1015

    Article  PubMed  Google Scholar 

  • Schulz S, Wagener S, Pfennig N (1990) Utilization of various chemotrophic and phototrophic bacteria as food by the anaerobic ciliate Trimyema compressum. Eur J Protistol 26:122–131

    Article  PubMed  CAS  Google Scholar 

  • Shinzato N, Watanabe I, Meng XY, Sekiguchi Y, Tamaki H, Matsui T, Kamagata Y (2007) Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol 54:627–636

    Article  PubMed  Google Scholar 

  • Small EB (1973) A study of ciliate protozoa from a small polluted stream in east-central Illinois. Am Zool 18:225–230

    Google Scholar 

  • Stams AJ (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Leeuwenhoek 66:271–294

    Article  PubMed  CAS  Google Scholar 

  • Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  PubMed  CAS  Google Scholar 

  • van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Article  Google Scholar 

  • van Bruggen JJA, Zwart KB, van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7

    Article  Google Scholar 

  • van Bruggen JJA, Zwart KB, Hermans JGE, van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterisation of Methanoplanus endosymbiosus sp. nov. an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Article  Google Scholar 

  • van Bruggen JJA, van Rens GLM, Geertman EJM, van Hove EM, Stumm CK (1988) Isolation of a methanogenic endosymbiont of the sapropelic ameba Pelomyxa palustris Greeff. J Protozool 35:20–23

    Google Scholar 

  • van Hoek AHAM, Akhmanova AS, Huynen M, Hackstein JHP (2000a) A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. Mol Biol Evol 17(1):202–206

    Article  PubMed  Google Scholar 

  • van Hoek AH, van Alen TA, Sprakel VS, Leunissen JA, Brigge T, Vogels GD, Hackstein JH (2000b) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    Article  PubMed  Google Scholar 

  • Wagener S, Pfennig N (1987) Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey. Arch Microbiol 149:4–11

    Article  CAS  Google Scholar 

  • Wagener S, Bardele CF, Pfennig N (1990) Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:496–501

    Article  CAS  Google Scholar 

  • Yamada K, Kamagata Y, Nakamura K, Inamori Y, Nakamura I (1994) Selectivity of food bacteria for the growth of anaerobic ciliate Trimyema compressum. Arch Microbiol 161:229–233

    Article  Google Scholar 

  • Yamada K, Kamagata Y, Nakamura K (1997) The effect of endosymbiotic methanogens on the growth and metabolic profile of the anaerobic free-living ciliate Trimyema compressum. FEMS Microbiol Lett 149:129–132

    Article  CAS  Google Scholar 

  • Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J 200:365–372

    PubMed  CAS  Google Scholar 

  • Yarlett N, Lloyd D, Williams AG (1982) Respiration of the rumen ciliate Dasytricha ruminantium Schuberg. Biochem J 206:259–266

    PubMed  CAS  Google Scholar 

  • Yarlett N, Lloyd D, Williams AG (1985) Butyrate formation from glucose by the rumen protozoon Dasytricha ruminantium. Biochem J 228:187–192

    PubMed  CAS  Google Scholar 

  • Zwart KB, Goosen NK, van Schijndel MW, Broers CAM, Stumm CK, Vogels GD (1988) Cytochemical localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta, and Trimyema compressum. J Gen Microbiol 134:2165–2170

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Kamagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shinzato, N., Kamagata, Y. (2010). The Methanogenic and Eubacterial Endosymbionts of Trimyema . In: Hackstein, J. (eds) (Endo)symbiotic Methanogenic Archaea. Microbiology Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13615-3_4

Download citation

Publish with us

Policies and ethics