Skip to main content

Free-Living Protozoa with Endosymbiotic Methanogens

  • Chapter
  • First Online:
(Endo)symbiotic Methanogenic Archaea

Part of the book series: Microbiology Monographs ((MICROMONO,volume 19))

Abstract

Methanogenic bacteria occur in many, but not all free-living obligate anaerobic protozoa. This sort of symbiosis is especially common among anaerobic ciliates, but is also found in a few species of amoebae and flagellates. Protozoa harbouring methanogens have a clostridium-type fermentative metabolism with H2 as metabolite, the hydrogen generation taking place in special organelles, so called hydrogenosomes. The relation between the host cells and their endosymbiotic methanogens is syntrophic hydrogen transfer. By removing the generated H2, the methanogens stimulate host H2-production, thus increasing the energetic yield of the energy metabolism. This sort of symbiosis has evolved independently in many cases and involves representatives of several major groups of methanogenic bacteria. Symbiotic methanogenesis of free-living anaerobic protozoa plays only a modest quantitative role in terms of CH4-production in most habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JHP (1998) A hydrogenosome with a genome. Nature 396:527–528

    Article  PubMed  CAS  Google Scholar 

  • Bernard C, Fenchel T (1996) Some microaerobic ciliates are facultative anaerobes. Eur J Protistol 32:293–297

    Article  Google Scholar 

  • Biagini GA, Finlay BJ, Lloyd D (1997) Evolution of the hydrogenosome. FEMS Microbiol Lett 155:133–140

    Article  PubMed  CAS  Google Scholar 

  • Broers CAM, Meiers HM, Symens JC, Stumm CK, Vogels GD (1993) Symbiotic association of Psalteriomonas vulgaris n. spec. with Methanobacterium formicicum. Eur J Protostol 29:98–105

    Article  CAS  Google Scholar 

  • Embley T, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 130:225–235

    Article  Google Scholar 

  • Embley TM, Martin W (1998) A hydrogen-producing mitochondrion. Nature 396:517–519

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Brown S (1992) RNA sequence analysis shows that the symbionts in the ciliate Metopus contortus are polymorphs of a single methanogen species. FEMS Microbiol Lett 97:57–62

    Article  CAS  Google Scholar 

  • Esteban G, Finlay BJ (1994) A new genus of anaerobic scuticociliate with endosymbiotic methanogens and ectobiotic bacteria. Arch Protistol 144:350–356

    Article  Google Scholar 

  • Esteban G, Guhl BE, Clarke KJ, Embley TM, Finlay BJ (1993) Cyclidium porcatum n.sp.: a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 29:262–270

    PubMed  Google Scholar 

  • Fenchel T (1993) Methanogenesis in marine shallow water sediments: the quantitative role of anaerobic protozoa with endosymbiotic methanogenic bacteria. Ophelia 37:67–82

    Google Scholar 

  • Fenchel T, Finlay BJ (1990a) Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol Ecol 74:269–276

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1990b) Oxygen toxicity, respiration and behavioural responses to oxygen in free-living anaerobic ciliates. J Gen Microbiol 136:1953–1959

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1991a) Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host. J Protozool 38:18–22

    Google Scholar 

  • Fenchel T, Finlay BJ (1991b) Synchronous division of an endosymbiotic methanogenic bacterium in the anaerobic ciliate Plagiopyla frontata Kahl. J Protozool 38:22–28

    Google Scholar 

  • Fenchel T, Finlay BJ (1991c) The biology of free-living anaerobic ciliates. Eur J Protistol 26:201–215

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Fenchel T, Ramsing NB (1992) Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Arch Microbiol 158:394–397

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163

    PubMed  CAS  Google Scholar 

  • Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314

    Article  CAS  Google Scholar 

  • Finlay BJ, Fenchel T (1991) Polymorphic bacterial symbionts in the anaerobic ciliated protozoon Metopus. FEMS Microbiol Lett 79:187–190

    Article  Google Scholar 

  • Finlay JB, Fenchel T (1992) An anaerobic ciliate as a natural chemostat for the growth of endosymbiotic methanogens. Eur J Protistol 28:127–137

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ, Embley TM, Fenchel T (1993) A new polymorphic methanogen, closely related to Methanocorpusculum parvum, living in stable symbiosis within the anaerobic ciliate Trimyema sp. J Gen Microbiol 139:371–378

    PubMed  CAS  Google Scholar 

  • Goosen NK, Horemans AMC, Hillebrand JW, Stumm CK, Vogels D (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Arch Microbiol 150:165–170

    Article  Google Scholar 

  • Goosen NK, van der Drift C, Stumm CK, Vogels GD (1990) End products of metabolism in the anaerobic ciliate Trimyema compressum in monoxenic cultures. FEMS Microbiol Lett 69:171–176

    Article  CAS  Google Scholar 

  • Hackstein JHP, Tielens AGM (2010) Hydrogenosomes. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archea. Springer, Heidelberg

    Google Scholar 

  • Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FGJ (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7:441–447

    Article  PubMed  CAS  Google Scholar 

  • Holler S, Pfennig N (1991) Fermentation products of the anaerobic ciliate Trimyema compressum in monoxenic cultures. Arch Microbiol 156:327–334

    Article  CAS  Google Scholar 

  • Hongoh Y, Ohkuma M (2010) Termite gut flagellates and their methanogenic and eubacterial symbionts. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, Heidelberg

    Google Scholar 

  • Lauterborn R (1901) Die “sapropelische” Lebewelt. Zool Anz 24:50–55

    Google Scholar 

  • Lynn DH (2008) The ciliated protozoa. Springer, Heidelberg

    Google Scholar 

  • MĂĽller M (1980) The hydrogenosome. In: Gooday GW, Lloyd D, Trinci APJ (eds) The eukaryotic cell. Cambridge University Press, Cambridge

    Google Scholar 

  • Oremland RS, Capone DG (1988) Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv Microb Ecol 10:285–383

    Article  CAS  Google Scholar 

  • Ushida K (2010) Symbiotic methanogens and rumen ciliates. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, Heidelberg

    Google Scholar 

  • van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Article  Google Scholar 

  • van Bruggen JJA, Stumm CK, Zwart KB, Vogels GD (1985) Endosymbiotic methanogenic bacteria of the sapropelic amoeba Mastigella. FEMS Microbiol Ecol 31:187–192

    Article  Google Scholar 

  • van Bruggen CAM, Zwart KB, Hermans JGF, van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbioticus sp. nov, an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Article  Google Scholar 

  • van Bruggen JJA, van Rens GLM, Geertman EJM, Zwart KB, Stumm CK, Vogels GD (1988) Isolation of a methanogenic endosymbiont of the sapropelic amoeba Pelomyxa palustris Greef. J Protozool 35:20–23

    Google Scholar 

  • van Hoek AHAM, van Alen TA, Vogels GD, Hackstein JHP (2006) Contribution by the methanogenic endosymbionts of anaerobic ciliates to methane production in Dutch freshwater sediments. Acta Protozool 45:215–224

    Google Scholar 

  • Worm P, MĂĽller N, Plugge CM, Stams AJM, Schink B (2010) Syntrophy in methanogenic degradation. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Fenchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fenchel, T., Finlay, B.J. (2010). Free-Living Protozoa with Endosymbiotic Methanogens. In: Hackstein, J. (eds) (Endo)symbiotic Methanogenic Archaea. Microbiology Monographs, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13615-3_1

Download citation

Publish with us

Policies and ethics