Skip to main content

Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

  • Chapter
  • First Online:
Book cover Plant Biotechnology for Sustainable Production of Energy and Co-products

Abstract

This chapter was initiated from a symposium and workshop on the scientific advances, issues and bioethics of gene confinement in genetically modified grasses conducted on 13–14 May 2005 at Yale University in New Haven, CT. Genetic modification of dedicated bioenergy crops such as switchgrass will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants to be open pollinated, with the undesirable capacity of outcrossing to non-transgenic and wild relative species. We examine previous work on pollen-mediated and seed-mediated gene flow of genetically modified grasses, in particular herbicide resistant traits, relevant to gene flow in grasses providing a perspective on the implementation of this technology for improvement of perennial bioenergy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldhous P (2003) Time to choose. Nature 425:655

    Article  CAS  Google Scholar 

  • AOSA (2002) Rules for testing seeds. Association of Official Seed Analysts, Stillwater, OK

    Google Scholar 

  • Bae TW, Vanjildorj E, Song SY, Nishiguchi S, Yang SS, Song IJ, Chandrasekhar T, Kang TW, Kim JI, Koh YJ, Park SY, Lee J, Lee Y-E, Ryu KH, Riu KZ, Song P-S, Lee HY (2008) Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. J Environ Qual 37:207–218

    Article  PubMed  CAS  Google Scholar 

  • Belanger FC, Meagher TR, Day PR, Plumley K, Meyer WA (2003) Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Sci 43: 240–246

    Article  Google Scholar 

  • Bucchini L, Goldman LR (2002) Starlink corn: a risk analysis. Environ Health Perspect 110: 5–13

    Article  PubMed  CAS  Google Scholar 

  • Christoffer PM (2003) Transgenic glyphosate resistant creeping bentgrass: studies in pollen-mediated transgene flow. Masters Thesis, Washington State University

    Google Scholar 

  • Colwell RK, Norse EA, Pimentel D, Sharples FE, Simberloff D (1985) Genetic engineering in agriculture. Science 229:111–112

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    CAS  Google Scholar 

  • Eastham K, Sweet J (2002) Genetically modified organisms (GEOs): the significance of gene flow through pollen transfer. European Environment Agency, Copenhagen

    Google Scholar 

  • Ellstrand NC, Hoffman CA (1990) Hybridization as an avenue of escape for engineered genes—strategies for risk reduction. Bioscience 40:438–442

    Article  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 40:434–437

    Google Scholar 

  • Fei S, Nelson E (2003) Estimation of pollen viability, shedding pattern, and longevity of creeping bentgrass on artificial media. Crop Sci 43:2177–2181

    Article  Google Scholar 

  • Fei S, Nelson E (2004) Greenhouse evaluation of fitness-related reproductive traits in Roundup®-tolerant transgenic creeping bentgrass (Agrostis Stolonifera L.). In Vitro Cell Dev Biol Plant 40:266–273

    Article  Google Scholar 

  • Giles J (2003) Damned if they do, damned if they don’t. Nature 425:656–657

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ’GE-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–374

    Article  PubMed  CAS  Google Scholar 

  • Macilwain C (2005) US launches probe into sales of unapproved transgenic corn. Nature 434:423

    Article  PubMed  CAS  Google Scholar 

  • Mallory-Smith C, Zapiola ML (2008) Gene flow from glyphosate-resistant crops. Pest Manag Sci 64:428–440

    Article  PubMed  CAS  Google Scholar 

  • Marvier M, Acker RCV (2005) Can crop transgenes be kept on a leash? Front Ecol Environ 3:99–106

    Article  Google Scholar 

  • Ortiz-García S, Ezcurra E, Schoel B, Acevedo F, Soberón J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004). Proc Natl Acad Sci USA 102:12338–12343

    Article  PubMed  Google Scholar 

  • Pfender W, Graw R, Bradley W, Carney M, Maxwell L (2007) Emission rates, survival, and modeled dispersal of viable pollen of creeping bentgrass. Crop Sci 47:2529–2539

    Article  Google Scholar 

  • Piñeyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Herández A, Rangel A, Hufford MB, Gepts P, Garay-Arroyo A, Rivera-Bustamante R, Álvarez-Buylla ER (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GEO detection in landrace populations. Mol Ecol 18:750–761

    Article  PubMed  Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    Article  CAS  Google Scholar 

  • Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol 15:4243–4255

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ, Parkes HC (1995) Transgenic plants and the environment. J Exp Bot 46:467–488

    Article  CAS  Google Scholar 

  • Snow AA (2009) Unwanted transgenes re-discovered in oaxacan maize. Mol Ecol 18:569–571

    Article  PubMed  Google Scholar 

  • Stewart CN (2007) Biofuels and biocontainment. Nat Biotechnol 25:283–284

    Article  PubMed  CAS  Google Scholar 

  • Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The release of transgenic plants into agriculture. Ecology 70:298–315

    Article  Google Scholar 

  • Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S-i, Hinata K (1995) Tapetum-specific expression of the gene for an endo-β-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol 36:487–494

    PubMed  CAS  Google Scholar 

  • USDA-NASS (2006) Oregon agriculture and fisheries statistics. US Department of Agriculture National Statistics Service & Oregon Department of Agriculture

    Google Scholar 

  • Van de Water PK, Watrud LS, Lee EH, Burdick C, King GA (2007) Long-distance GE pollen movement of creeping bentgrass using modeled wind trajectory analysis. Ecol Appl 17:1244–1256

    Article  PubMed  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, van De Water PK (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538

    Article  PubMed  CAS  Google Scholar 

  • Wipff JK, Fricker C (2001) Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette Valley, Oregon. Int Turfgrass Soc Res J 9:224–242

    Google Scholar 

  • Wrubel RP, Krimsky S, Wetzler RE (1992) Field testing transgenic plants. BioScience 42:280–289

    Article  Google Scholar 

  • Zapiola ML, Mallory-Smith CA, Thompson JH, Rue LJ, Campbell CK, Butler MD (2007) Gene escape from glyphosate-resistant creeping bentgrass fields: past, present, and future. Proceedings of the Western Society of Weed Science, Abstract 82

    Google Scholar 

  • Zapiola ML, Campbell CK, Butler MD, Mallory-Smith CA (2008) Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. J Appl Ecol 45:486–494

    Article  Google Scholar 

Download references

Disclaimer:

Mention of trade names does not imply endorsement of the commercial products that are mentioned nor do the views expressed herein necessarily reflect the views of USDA or USEPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert P. Kausch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kausch, A.P. et al. (2010). Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops. In: Mascia, P., Scheffran, J., Widholm, J. (eds) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13440-1_10

Download citation

Publish with us

Policies and ethics