Skip to main content

Clustering Analysis of Moving Objects

  • Chapter
Moving Objects Management

Abstract

In many moving objects management applications, realtime data analysis such as clustering analysis is becoming one of the most important requirements. Most spatial clustering algorithms deal with objects in Euclidean space. In many real-life applications, however, the accessibility of spatial objects is constrained by spatial networks (e.g., road networks). It is therefore more realistic to work on clustering objects in a road network. The distance metric in such a setting is redefined by the network distance, which has to be computed by the expensive shortest path distance over the network. The existing methods are not applicable to such cases. Therefore, we use the information of nodes and edges in the network to present two new static clustering algorithms that prune the search space and avoid unnecessary distance computations. In addition, we present the problem of clustering moving objects in spatial networks and propose a unified framework to address it. The goals are to optimize the cost of clustering moving objects and support multiple types of clusters in a single application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal R, Gehrke J, Gunopulos D, and Raghavan P (1998) Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 1998), Seattle, Washington, USA, pp 94–105

    Google Scholar 

  2. Ankerst M, Breunig MM, Kriegel HP, and Sander J (1999) OPTICS: Ordering Points to Identify the Clustering Structure. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 1999), Philadelphia, Pennsylvania, USA, pp 49–60

    Google Scholar 

  3. Fisher D (1987) Knowledge Acquisition Via Incremental Conceptual Clustering. Machine Learning 2:139–172

    Google Scholar 

  4. Guha S, Rastogi R, Shim K (1998) CURE: An Effcient Clustering Algorithm for Large Databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 1998), Seattle, Washington, USA, pp 73–84

    Google Scholar 

  5. Jain AK, Dubes RC (1988) Algorithms for Clustering Data. Prentice Hall

    Google Scholar 

  6. Jin W, Jiang Y, Qian W, Tung AKH (2006) Mining Outliers in Spatial Networks. In: Proceedings of the 11th International Conference on Database Systems for Advanced Applications (DASFAA 2006), Singapore, pp 156–170

    Google Scholar 

  7. Karypis G, Han EH, Kumar V (1999) Chameleon: Hierarchical Clustering Using Dynamic Modeling. IEEE Computer 32(8):68–75

    Google Scholar 

  8. Kalnis P, Mamoulis N, Bakiras S (2005) On Discovering Moving Clusters in Spatio-Temporal Data. In: Proceedings of the 9th Symposium on Spatial and Temporal Databases (SSTD 2005), Angra dos Reis, Brazil, pp 364–381

    Google Scholar 

  9. Kaufman L, Rousseeuw PJ (1990) Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons Inc.

    Google Scholar 

  10. Li YF, Han JW, Yang J (2004) Clustering Moving Objects. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), Seattle, Washington, USA, pp 617–622.

    Google Scholar 

  11. Martin E, Kriegel HP, Sander J, Xu X (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD 1996), Portland, Oregon, pp 226–231

    Google Scholar 

  12. Ng RT and Han J (1994) Efficient and Effective Clustering Methods for Spatial Data Mining. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), Santiago de Chile, Chile, pp 144–155

    Google Scholar 

  13. Nehme RV, Rundensteiner EA (2006) SCUBA: Scalable Cluster-Based Algorithm for Evaluating Continuous Spatio-Temporal Queries on Moving Objects. In: Proceedings of the 10th International Conference on Extending Database Technology (EDBT 2006), Munich, Germany, pp 1001–1019

    Google Scholar 

  14. Nanopoulos A, Theodoridis Y, Manolopoulos Y (2001) C2P: Clustering Based on Closest Pairs. In: Proceedings of the 27th International Conference on Very Large Data Bases (VLDB 2001), Roma, Italy, pp 331–340

    Google Scholar 

  15. Wang W, Yang J, Muntz R (1997) STING: A Statistical Information Grid Approach to Spatial Data Mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB 1997), Athens, Greece, pp 186–195

    Google Scholar 

  16. Yiu ML, Mamoulis N (2004) Clustering Objects on a Spatial Network. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2004), Paris, France, pp 443–454

    Google Scholar 

  17. Zhang Q, Lin X (2004) Clustering Moving Objects for Spatio-Temporal Selectivity Estimation. In: Proceedings of the 15th Australasian Database Conference (ADC 2004), Dunedin, New Zealand, pp 123–130

    Google Scholar 

  18. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: An Effcient Data Clustering Method for Very Large Databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 1996), Montreal, Canada, pp 103–114

    Google Scholar 

  19. Zahn C (1971) Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Transactions on Computers 20(1):68–86

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, J., Meng, X. (2010). Clustering Analysis of Moving Objects. In: Moving Objects Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13199-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13199-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13198-1

  • Online ISBN: 978-3-642-13199-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics