Skip to main content

PET and SPECT

  • Chapter
Small Animal Imaging

Abstract

Both positron emission tomography (PET) and single photon emission computed tomography (SPECT) use radioactively labeled molecules that interact with a specific cellular target after injection. Images are formed by the detection of gamma rays, X-rays, or annihilation quanta (in the case of positron imaging). If single photon emitters are used, the direction of flight has to be determined by geometric collimation. In contrast, coincidence detection exploits the unique feature of positron annihilation which results in two high energy gamma rays simultaneously emitted back-to-back.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anger HO (1958) Scintillation camera. Rev Sci Instr 29:27–33

    Article  CAS  Google Scholar 

  • Beekman F, van der Have F (2007) The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34(2):151–161

    Article  PubMed  Google Scholar 

  • Brasse D, Kinahan PE et al (2005) Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. J Nucl Med 46(5):859–867

    PubMed  Google Scholar 

  • Casey ME, Nutt R (1986) Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463

    Article  Google Scholar 

  • Chen CH, Muzic RF Jr et al (1999) Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 40(1):118–130

    PubMed  CAS  Google Scholar 

  • Chen CL, Wang Y et al (2009) Toward quantitative small animal pinhole SPECT: assessment of quantitation accuracy prior to image compensations. Mol Imaging Biol 11(3):195–203

    Article  PubMed  CAS  Google Scholar 

  • Cherry SR, Shao Y et al (1997) MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44:1161–1166

    Article  CAS  Google Scholar 

  • Cherry SR, Sorenson JA et al (2003) Phys Nucl Med. Saunders, Philadelphia

    Google Scholar 

  • Chow PL, Rannou FR et al (2005) Attenuation correction for small animal PET tomographs. Phys Med Biol 50(8):1837–1850

    Article  PubMed  Google Scholar 

  • Chung YH, Choi Y et al (2004) Characterization of dual layer phoswich detector performance for small animal PET using Monte Carlo simulation. Phys Med Biol 49(13):2881–2890

    Article  PubMed  Google Scholar 

  • Hoffman EJ, Huang SC et al (1979) Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr 3(3):299–308

    Article  PubMed  CAS  Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 13:601–609

    Article  CAS  Google Scholar 

  • Huisman MC, Reder S et al (2007) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34(4):532–540

    Article  PubMed  Google Scholar 

  • Hwang AB, Hasegawa BH (2005) Attenuation correction for small animal SPECT imaging using x-ray CT data. Med Phys 32(9):2799–2804

    Article  PubMed  Google Scholar 

  • Hwang AB, Franc BL et al (2008) Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol 53(9):2233–2252

    Article  PubMed  Google Scholar 

  • Judenhofer MS, Catana C et al (2007) PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 244(3):807–814

    Article  PubMed  Google Scholar 

  • Kemp BJ, Hruska CB et al (2009) NEMA NU 2-2007 performance measurements of the Siemens Inveon preclinical small animal PET system. Phys Med Biol 54(8):2359–2376

    Article  PubMed  Google Scholar 

  • Lecomte R, Cadorette J et al (1996) Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 43:1952–1957

    Article  Google Scholar 

  • Liang Z, Turkington T et al (1992) Simultaneous compensation for attenuation, scatter and detector response for SPECT reconstruction in three dimensions. Phys Med Biol 37:587–603

    Article  PubMed  CAS  Google Scholar 

  • Meikle SR, Kench P et al (2005) Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 50(22):R45–R61

    Article  PubMed  CAS  Google Scholar 

  • Rafecas M, Mosler B et al (2004) Use of Monte-Carlo based probability matrix for 3D iterative reconstruction of MADPET-II data. IEEE Trans Nucl Sci 51(5):2597–2605

    Google Scholar 

  • Schafers KP, Reader AJ et al (2005) Performance evaluation of the 32-module quadHIDAC small-animal PET scanner. J Nucl Med 46(6):996–1004

    PubMed  Google Scholar 

  • Schmand M, Eriksson L et al (1998) Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph: HRRT. IEEE Trans Nucl Sci 45:3000–3006

    Article  Google Scholar 

  • Schramm NU, Ebel G et al (2003) High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50(3):315–320

    Article  Google Scholar 

  • Seidel J, Vaquero JJ et al (2003) Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 50:1347–1350

    Article  Google Scholar 

  • Surti S, Karp JS (2004) Imaging characteristics of a 3-dimensional GSO whole-body PET camera. J Nucl Med 45(6):1040–1049

    PubMed  CAS  Google Scholar 

  • van der Have F, Vastenhouw B et al (2009) U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med 50(4):599–605

    Article  PubMed  Google Scholar 

  • Vanhove C, Defrise M et al (2009) Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information. Eur J Nucl Med Mol Imaging 36(7):1049–1063

    Article  PubMed  Google Scholar 

  • Wirrwar AK, Nikolaus S et al (2005) TierSPECT: performance of a dedicated small-animal-SPECT camera and first in vivo measurements. Z Med Phys 15(1):14–22

    PubMed  Google Scholar 

  • Zeniya T, Watabe H et al (2006) Use of a compact pixellated gamma camera for small animal pinhole SPECT imaging. Ann Nucl Med 20(6):409–416

    Article  PubMed  Google Scholar 

  • Ziegler SI, Pichler BJ et al (2001) A prototype high resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 28(2):136–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle I. Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziegler, S.I. (2011). PET and SPECT. In: Kiessling, F., Pichler, B. (eds) Small Animal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12945-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12945-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12944-5

  • Online ISBN: 978-3-642-12945-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics