Skip to main content

Civilization based on metals

  • Chapter
  • First Online:

Abstract

Metals are one category of a trio of geological materials on which is based our present industrial civilization. The other two categories are mineral fuels like coal, petroleum and natural gas, and nonmetallics (industrial minerals) like stone, sand and gravel, salt or clays. Fuels and nonmetallics (with some exceptions where metallic ore is also a nuclear fuel such as uranium, and where metallic ore has alternative applications as an industrial mineral from which the metal component is not extracted) are not treated in this book as there is voluminous literature that provides this information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Laznicka P (1985d) The geological association of coal and metallic ores, a review, in: same publication, v 13, pp 1–71

    Google Scholar 

  • Field CW, Rye RO, Dymond JR, et al (1983) Metalliferous sediments of the East Pacific, in: WC Shanks III, ed, Cameron Volume on Nonconventional Mineral Deposits. AIME, New York, pp 133–156

    Google Scholar 

  • Ozerova NA (1981) New mercury ore belt in Western Europe. Geol Rud Mestor, 1981, pp 49–56

    Google Scholar 

  • Anderson C, Brooks R, Stewart R, Simcock R, Robinson B (1999) The phytoremediation and phytomining of heavy metals. PACRIM ‘99, Bali, AusIMM, pp 127–132

    Google Scholar 

  • Leblanc M, Morales JA, Borrego J, Elberz-Poulichet F (2000) 4,500 year old mining pollution in south-western Spain: long-term implications for modern mining pollution. Econ Geol, v 95, pp 655–662

    Article  Google Scholar 

  • Hauptmann A (2007) The archeometallurgy of copper. Evidence from Faynan, Jordan. Springer, Berlin, 388 p

    Book  Google Scholar 

  • Gat A (2006) War in Human Civilization. Oxford Univ Press, New York, 822 p

    Google Scholar 

  • Andersson A, Dahlman B, Gee DG, Snäll S (1985) The Scandinavian alum shales. Sveriges Geol Unders, Ca 56, pp 1–50

    Google Scholar 

  • Valkovic V (1978) Trace Elements in Petroleum. PPC Books, Tulsa, OK, 269 p

    Google Scholar 

  • Hannington MD, Jonasson IR, Herzig PM, Petersen S (1995) Physical and chemical processes of seafloor mineralization. Geophys Monogr 91, pp 115–157

    Google Scholar 

  • Gavshin VM, Zakharov VA (1996) Geochemistry of the Upper Jurassic-Lower Cretaceous Bazhenov Formation, West Siberia. Econ Geol, v 91, pp 122–133

    Article  Google Scholar 

  • Conant LC, Swanson VE (1961) Chattanooga Shale and related rocks of central Tennessee and nearby areas. U.S. Geol Surv Prof Paper 357, 91 p

    Google Scholar 

  • Coveney RM, Murowchick JB, Grauch RI, Chen N, Glascock MD (1992) Field relations, origins and resource implications for platiniferous molybdenumnickel ores in black shales of South China. Explor Min Geol, v 1, pp 21–28

    Google Scholar 

  • Barrett J, Hughes MN, Karavaiko GI, Spencer PA (1993) Metal Extraction by Bacterial Oxidation of Minerals. Ellis Horwood, New York, 191 p

    Google Scholar 

  • Bender F (1977) An Earth Scientist’s view of metallic resources, in: F Bender, ed, Mineral Raw Materials. Schweizerbart, Stuttgart, pp 117–136

    Google Scholar 

  • Laznicka P (1999) Quantitative relationships among giant deposits of metals. Econ Geol, v 94, pp 455–472

    Article  Google Scholar 

  • Kesler SE (1994) Mineral Resources, Economics and the Environment. Macmillan, New York, 391 p

    Google Scholar 

  • Diamond J (2005) Collapse. How Societies Choose to Fail or Survive. Penguin Books, London, 575 p

    Google Scholar 

  • Llewelyn GIW (1976) Recovery of uranium from sea-water, in: Uranium Ore Processing. IAEA, Vienna, pp 205–231

    Google Scholar 

  • U.S. Geological Survey (2003) Mineral Commodity Summaries 2003. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • O’Neill GK (1981) 2081. A Hopeful View of the Human Future. Simon and Schuster, New York, 284 p

    Google Scholar 

  • Smith GI (1979) Subsurface stratigraphy and geochemistry of late Quaternary evaporites, Searles Lake, California. U.S. Geol Surv Prof Paper 1043, 130 p

    Google Scholar 

  • Laznicka P (1996) Discovery of giant metallic deposits. 30th Intern Geol Congr Beijing, lecture

    Google Scholar 

  • Morgan JD Jr (1976) World nonfuel mineral supply: The outlook as we approach the Twenty-first century. U.S. Geol Surv Prof Paper 1193, pp 203–215

    Google Scholar 

  • Routhier P (1980) Où Sont les Métaux Pour L’avenir? Mém du BRGM, No 105, 410 p

    Google Scholar 

  • Toth JR (1980) Deposition of submarine crusts rich in manganese and iron. Geol Soc Amer Bull, v 91, pp 44–54

    Article  Google Scholar 

  • Plimer I (2009) Heaven and Earth. Conor Publ, 503 p

    Google Scholar 

  • Fraser DC (1961) Cupriferous peat: Embryonic copper ore? CIM Transact, v LXIV, pp 301–304

    Google Scholar 

  • Goodfellow WD, Zierenberg RA (1997) Genesis of massive sulfide deposits at sediment-covered spreading centres. Geol Assoc Canada, Short Course Notes, v 13, pp 331–366

    Google Scholar 

  • Dahlkamp, FJ (1993) Uranium Ore Deposits. Springer, Berlin & Heidelberg, 460 p

    Google Scholar 

  • Mero JL (1965) The Mineral Resources of the Sea. Elsevier, Amsterdam, 312 p

    Google Scholar 

  • Laznicka P (2006) Giant Metallic Deposits; Future Sources of Industruial Metals. Springer, 732 p

    Google Scholar 

  • Rytuba JJ, Glanzman RK (1985) Relation of mercury, uranium and lithium deposits to the McDermitt caldera complex, Nevada-Oregon, in: VF Hollister, ed, Discovery of Epithermal Precious Metal Deposits. AIME, pp 128–135

    Google Scholar 

  • Fouquet Y, et al (1993) Metallogenesis in back-arc environments: The Lau Basin example. Econ Geol, v 88, pp 2154–2181

    Article  Google Scholar 

  • Bouška V (1981) Geochemistry of Coal. Academia, Prague, 284 p

    Google Scholar 

  • Barton PB Jr (1980) Presidential Address: Public perspective of resources. Econ Geol, v 75, pp 801–905

    Article  Google Scholar 

  • Hamilton JM (1982) Geology of the Sullivan orebody, Kimberley, B.C., Canada. Geol Assoc Canada Spec Paper 25, pp 597–665

    Google Scholar 

  • Beck RD (1991) The image of the minerals industry. CIM Bulletin, v 84, pp 86–88

    Google Scholar 

  • Homer-Dixon T (2006) The Upside of Down. Catastrophe, Creativity, and the Renewal of Civilization. Text Publ., Melbourne, 429 p

    Google Scholar 

  • Paone J (1970) Germanium, in: Mineral Facts and Problems. U.S. Bur Mines Bull 650, pp 563–571

    Google Scholar 

  • Hoal KO (2008) Getting the geo into geomet. Soc Econ Geol Newslett No 73, pp 1 & 11–15

    Google Scholar 

  • Ophuls W (1977) Ecology and the Politics of Scarcity. Freeman, San Francisco, CA, 303 p

    Google Scholar 

  • Pichler H (1970) Italianische Vulkan-Gebiete I (Somma- Vesuv, Latium, Toscana). Borntraeger, 258 p

    Google Scholar 

  • Ferrell JE (1985) Lithium, in: Mineral Facts and Problems, 1985 edition, U.S. Bur Mines Bull 675, pp 461–470

    Google Scholar 

  • Schmitt H (2005) Return to the Moon: Exploration, enterprise and energy in the human settlement of space. Copernicus Books, New York, 352 p

    Google Scholar 

  • Holland HD, Petersen U (1995) Living Dangerously: The Earth, its Resources, and the Environment. Princeton Univ Press, Princeton, NJ, 490 p

    Google Scholar 

  • Rona PA (1988) Hydrothermal mineralization at oceanic ridges. Canad Mineralog, v 26, pp 431–465

    Google Scholar 

  • Kats AYa, Kremenetsky AA, Podkopaev OI (1998) The germanium mineral resource base of the Russian Federation. Mineral’nye Resursy Rossii, 1998, pp 5–9

    Google Scholar 

  • Crawson P (1998) Minerals Handbook, 1998–1999. Mining Journal Books, London

    Google Scholar 

  • Camprubí A, Melgarejo J-C, Proenza JA, et al (2003) Mining and geological knowledge during the Neolithic: A geological study of the variscite mines at Gavà, Catalonia. Episodes, v 26, pp 295–301

    Google Scholar 

  • Hein JR, et al (1985) Geological and geochemical data for seamounts and associated ferromanganese crusts in and near the Hawaiian, Johnston Island and Palmyra Island economic zones. U.S. Geol Surv Open File Report 85- 292, pp 1–129

    Google Scholar 

  • Barney GO, et al (1980) The Global 2000 Report to the President. U.S. Government Printing Office, Washington D.C, 755 p

    Google Scholar 

  • Heinberg R (2005) The party’s over. Oil, war and the fate of industrial societies, 2nd ed. New Society Publishers, 306 p

    Google Scholar 

  • Thiry HB, Lenoble J-P, Rogel P (1977) French exploration seeks to define mineable nodule tonnages on Pacific floor. Eng Min Journ, July 1977, pp 86–87

    Google Scholar 

  • Craig JR, Vaughan DJ, Skinner BJ (1988) Resources of the Earth. Prentice Hall, Englewood Cliffs, NJ, 395 p

    Google Scholar 

  • McKelvey VE, Strobell JD Jr, Slaughter AL (1986) The vanadiferous zone of the Phosphoria Formation in western Wyoming and southeastern Idaho. U.S. Geol Surv Prof Paper 1465, 27 p

    Google Scholar 

  • Scott J, Collins GA, Hodgson GW (1954) Trace metals in the McMurray Oil Sands and other Cretaceous reservoirs of Alberta. CIM Bull, Jan 1954, pp 36–41

    Google Scholar 

  • Kramer DA (1985) Magnesium, in: Mineral Facts and Problems, U.S. Bur of Mines, Bull 675, pp 471–482

    Google Scholar 

  • Hoal KO, McNulty TP, Schmidt R (2006) Metallurgical advances and their impact on mineral exploration and mining. Soc Econ Geol Spec Publ 12, pp 243–261

    Google Scholar 

  • Ashleman JC, Taylor CD, Smith PR (1997) Porphyry molybdenum deposits of Alaska, with emphasis on the geology of the Quartz Hill deposit, Southeastern Alaska. Econ Geol Monogr 9, pp 334–354

    Google Scholar 

  • White WH, Bookstrom AA, Kamilli RJ, et al (1981) Character and origin of Climax-type molybdenum deposits. Econ Geol 75th Anniv Vol, pp 270–316

    Google Scholar 

  • Denson NM, Gill JR (1965) Uranium-bearing lignite and carbonaceous shale in the southwestern part of the Williston Basin-a regional study. U.S. Geol Surv Prof Paper 463, 75 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Laznicka .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laznicka, P. (2010). Civilization based on metals. In: Giant Metallic Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12405-1_1

Download citation

Publish with us

Policies and ethics