Skip to main content

Converter Reactors With a Thermal Neutron Spectrum

  • Chapter
  • First Online:
Sustainable and Safe Nuclear Fission Energy

Part of the book series: Power Systems ((POWSYS))

  • 2857 Accesses

Abstract

Nuclear power generation is currently mainly based on light water reactors, designed as pressurized water reactors and boiling water reactors. These are built by a number of manufacturers in various countries of the world. In this chapter, the standard German PWR of 1,300 MW(e) and the European Pressurized Water Reactor (EPR) will be described. In addition, the chapter deals with the German Standard BWR of 1,280 MW(e) and the newer design SWR-1,000 (KERENA). Gas cooled and graphite moderated commercial reactors with natural uranium were developed in the United Kingdom and in France and built in the 1950s and 1960s (MAGNOX reactors). Advanced gas cooled reactors (AGCRs) with graphite as moderator and carbon dioxide as coolant gas have been built in unit sizes up to 620 MW(e). High temperature gas cooled reactors with gas outlet temperature of 700–740\({^{\circ }}\mathrm{ C}\) use helium as a coolant gas. Their fuel elements have been developed as prismatic or spherical pebble fuel elements. High temperature gas cooled reactors with medium enriched uranium are now designed mainly as small modular reactors for safety reasons. Power reactors with heavy water as the moderator and heavy water or light water as coolant have been developed in Canada, Europe and Japan up to unit sizes of 630 MW(e). The advanced CANDU reactor (ACR) is developed currently to a unit size of up to 1,000 MW(e). Homogeneous core thermal breeders with molten salt and light water breeder reactors together with accelerator driven subcritical reactor cores are still in the design or development phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Druckwasserreaktor (1981) Kraftwerk Union AG, K/10567, Erlangen

    Google Scholar 

  2. EPR—European Pressurized Water Reactor, the 1600 MWe Reactor. http://www.areva-np.com/common/liblocal/docs/Brochure/EPR_US_%20May%202005.pdf

  3. Oldekop W (ed) (1974) Druckwasserreaktoren für Kernkraftwerke. Karl Thiemig, München

    Google Scholar 

  4. International Atomic Energy Agency (1981) Technical evaluation of bids for nuclear power plants—a guide book. International Atomic Energy Agency, TR 204, Vienna

    Google Scholar 

  5. Lunin G et al (2002) The Russian advanced VVER reactor designs. Nucl News 45:28–37

    Google Scholar 

  6. Nero AV (1979) A guidebook to nuclear reactors. University of California Press, Berkeley

    Google Scholar 

  7. Märkl H (1976) Core engineering and performance of KWU pressurized water reactors. Kraftwerk Union AG, Erlangen

    Google Scholar 

  8. Lamarsh JR (1975) Introduction to nuclear engineering. Addison-Wesley, Reading

    Google Scholar 

  9. Lewis EE (1977) Nuclear power reactor safety. Wiley, New York

    Google Scholar 

  10. Smidt D (1979) Reaktor-Sicherheitstechnik. Springer, Berlin-Heidelberg-New York

    Book  Google Scholar 

  11. Strasser A et al (2005) Fuel fabrication process handbook. Advanced nuclear technology international, Surahammer, Sweden

    Google Scholar 

  12. Güldner R et al (2009) Contribution of advanced fuel technologies to improved nuclear power plant operation. In: The uranium institute 24th annual symposium, London

    Google Scholar 

  13. Oka Y et al (1993) Concept and design of a supercritical-pressure, direct-cycle light water reactor. Nucl Technol 103:295–302

    Google Scholar 

  14. Monti L (2009) Multi-scale, coupled reactor physics/thermo-hydraulics systems and applications to the HPLWR3 pass core. Dissertation, Fakultät für Maschinenbau, Universität Karlsruhe (TH)

    Google Scholar 

  15. Hofmeister J et al (2005) Optimization of a fuel assembly for a HPLWR. In: Proceedings of JCAPP05, Seoul, Korea

    Google Scholar 

  16. Ehrlich K et al (2004) Materials for high performance light water reactors. J Nucl Mater 327:140–147

    Article  Google Scholar 

  17. Schulenberg T et al (2007) Core design concepts for high performance light water reactors. Nucl Eng Technol 39(4):249–256

    Article  Google Scholar 

  18. Fischer K et al (2009) Design of supercritical water cooled reactor with three pass arrangement. Nucl Eng Des 239:800–812

    Article  Google Scholar 

  19. Starflinger J et al (2008) Results of mid term assessment of the high performance light water reactor phase 3 project. In: Proceedings of ICAPP09, Tokyo

    Google Scholar 

  20. Kernkraftwerk Gundremmingen 1280 MWe BWR (2000). www.kkw.gundremmingen.de

  21. SWR-1000, An advanced boiling water reactor with passive safety features (2007). www.areva.com

  22. Sauer A (1969) Siedewasserreaktoren für Kernkraftwerke, 10th edn. AEG Telefunken, Handbücher Band, Berlin

    Google Scholar 

  23. Stosic Z et al (2008) Boiling water reactor with innovative safety concept, the generation III + SWR-1000. Nucl Eng Des 238:1863–1901

    Article  Google Scholar 

  24. Boyer VS et al (1976) High temperature reactors. In: Zaleski P (ed) Nuclear energy maturity, proceedings of the European nuclear conference, Paris, vol 2. Pergamon Press, Oxford, 21–25 April 1975, pp 191–217

    Google Scholar 

  25. Dahlberg RC et al (1974) HTGR fuel and fuel cycle summary description. General Atomic Company, GA-A 12801, San Diego

    Google Scholar 

  26. Electric Power Research Institute (1976) Development status and operational features of the high temperature gas cooled reactor. Electric Power Research Institute, EPRI NP-142, Palo Alto

    Google Scholar 

  27. Harder H et al (1971) Das 300 MWe Thorium-Hochtemperatur-Kernkraftwerk (THTR). Atomwirtschaft/Atomtechnik 16:238–245

    Google Scholar 

  28. Schulten R et al (1974) The Pebble-bed high temperature reactor as a source of nuclear process heat. Kernforschungsanlage Jülich. Jül 1115-RG

    Google Scholar 

  29. Zhang Z et al (2006) Design aspects of the Chinese modular high temperatur gas cooled reactor HTR-PM. Nucl Eng Des 236:485–490

    Article  Google Scholar 

  30. Bogusch E et al (2009) Programs and projects for high temperature reactor development. Atomwirtschaft 54(2):84–88

    Google Scholar 

  31. Reutler H (1988) Plant design and safety concept of the HTR module reactor. Nucl Eng Des 109:335–340

    Article  Google Scholar 

  32. Reutler H, Lohnert G (1984) Advantages of going modular in HTRs. Nucl Eng Design 78:129–136

    Article  Google Scholar 

  33. DelCal G et al (2002) TRISO-coated fuel processing to support high temperature gas cooled reactors, ORNL/TM-2002/166

    Google Scholar 

  34. Koster A et al (2003) PBMR design for the future. Nucl Eng Design 222:231–245

    Article  Google Scholar 

  35. Bernnat W et al (2001) Models for reactor physics calculations for HTR pebble bed modular reactors. Nucl Eng Des 222:331–347

    Article  Google Scholar 

  36. Wessmann GL, Mofette TR (1973) Safety design bases for HTGR. Nucl Saf 14:618–634

    Google Scholar 

  37. Canada enters the nuclear age, published by AECL (1997) McGill-Queens University Press, Montreal-Kingston

    Google Scholar 

  38. Foster JS et al (1975) The status of the Canadian nuclear program and possible future strategies. Ann Nucl Energy 2:689–703

    Google Scholar 

  39. McIntyre HC (1975) Natural uranium heavy water reactors. Sci Am 233(4):17–27

    Article  Google Scholar 

  40. Smith HA (1976) A review of the development status of CANDU nuclear power plants. In: Zaleski P (ed) Nuclear energy maturity, Proceedings of the European nuclear conference, Paris, vol 2. Pergamon Press, Oxford, 21–25 April 1975, pp 38–44

    Google Scholar 

  41. Electric Power Research Institute (1977) Study of the development status and operational features of heavy water reactors, Palo Alto, CA. EPRI NP-365

    Google Scholar 

  42. Woodhead LW et al (1976) Performance of Canadian commercial nuclear units and heavy water plants. In: Zaleski P (ed) Nuclear energy maturity, proceedings of the European nuclear conference, Paris, vol 2. Pergamon Press, Oxford, 21–25 April 1975, pp 160–162

    Google Scholar 

  43. Torgerson D (2002) The ACR-700-Raising the bar for reactor safety performance, economics and constructability. Nucl News 4(11):24–32

    Google Scholar 

  44. Luxat J (2002) Thermal-Hydraulic aspects of progression to severe accidents in CANDU reactors. Nucl Technol 167:187–210

    Google Scholar 

  45. Oak Ridge National Laboratory (1971) Conceptual design study of a single fluid molten salt breeder reactor. ORNL-4541

    Google Scholar 

  46. Oak Ridge National Laboratory (1972) The development status of molten salt breeder reactors. ORNL-4812

    Google Scholar 

  47. Perry AM, Weinberg AM (1972) Thermal breeder reactors. Ann Rev Nucl Sci 22:317–354

    Google Scholar 

  48. International Atomic Energy Agency (1979) Status and prospects of thermal breeders and their effect on fuel utilization. IAEA Technical Report Series No. 195, International Atomic Energy Agency, Vienna

    Google Scholar 

  49. Nuttin A et al (2005) Potential of thorium molten salt reactors: detailed calculations and concept evolution with a view to large scale energy production. Prog Nucl Energy 46(1):77–99

    Article  Google Scholar 

  50. Radkowsky A et al (1998) The nonproliferative light water thorium reactor: a new approach to light water reactor core technology. Nucl Technol 124:215–222

    Google Scholar 

  51. Prael RE et al (1989) User Guide to LCS: The LAHET Code System, LA-UR-89-3014

    Google Scholar 

  52. Broeders CHM et al (1997) Neutronenphysikalische Analysen von beschleunigergetriebenen unterkritischen Anordnungen. Nachrichten—Forschungszentrum Karlsruhe 29:411–420

    Google Scholar 

  53. Saito S et al (2006) Design optimization of ADS plant proposed by JAERI. Nucl Instrum Methods Phys Res A 562:646–649

    Article  Google Scholar 

  54. Rief H, Takahashi H (1994) Some physics considerations in actinide and fission product transmutation. In: Proceedings of the international conference on reactor physics and reactor computations, Tel-Aviv, Ben-Gurion University of the Negev Press, 23–26 Jan 1994, p 108

    Google Scholar 

  55. Bowman CD et al (1992) Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl Instrum Methods A 320:336–367

    Article  Google Scholar 

  56. Rubbia C et al (1995) Conceptual design of a fast neutron operated high power energy amplifier, CERN/AT/95-44, Geneva

    Google Scholar 

  57. Weinberg AM, Wigner EP (1958) The physical theory of neutron chain reactors. University of Chicago Press, Chicago

    Google Scholar 

  58. Ahlström PE (2004) Partitioning and transmutation. Current developments—2004, Technical Report TR-04-15. Svensk Kärnbränslehantering AB, Stockholm

    Google Scholar 

  59. Maschek W et al (2008) Accelerator driven systems for transmutation: fuel development, design and safety. Prog Nucl Energy 50:333–340

    Article  Google Scholar 

  60. Wade D (2000) ATW neutronic design studies. International seminar on advanced nuclear energy systems towards zero release of radioactive waste, Susono, Japan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessler, G. (2012). Converter Reactors With a Thermal Neutron Spectrum. In: Sustainable and Safe Nuclear Fission Energy. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11990-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11990-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11989-7

  • Online ISBN: 978-3-642-11990-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics