Skip to main content

A Zero-Mach Solver and Reduced Order Acoustic Representations for Modeling and Control of Combustion Instabilities

  • Conference paper
  • 1836 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 108))

Abstract

Thermoacoustic instabilities are a serious problem for lean premixed combustion systems. Due to different time and length scales associated with the flow field, combustion, and acoustics, numerical computations of thermoacoustic phenomena are conceptually challenging. Using these methods to successfully design active control strategies is therefore difficult. This work presents a coupled method for the simulation of thermoacoustic instabilities in low Mach number reacting flows. The acoustics are represented by an experimentally identified reduced order model. A zero-Mach solver is used for the flame dynamics on the hydrodynamic scale. Two control schemes are employed to suppress thermoacoustic oscillations, equivalence ratio modulation and control of the acoustic boundary conditions. Both methods are shown to be capable of effectively diminishing the instability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candel, S.: Proc. Combust. Inst. 29(1), 1 (2002)

    Google Scholar 

  2. Lieuwen, T.C., Yang, V. (eds.): Combustion Instabilities in Gas Turbine Engines. Progress in Astronautics and Aeronautics, vol. 210. AIAA, Inc. (2005)

    Google Scholar 

  3. Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.P.: J. Fluid Mech. 570, 17 (2007)

    Google Scholar 

  4. Paschereit, C.O., Schuermans, B., Polifke, W., Mattson, O.: J. Eng. Gas Turbines Power 124(2), 239 (2002)

    Google Scholar 

  5. van Kampen, J.F., Kok, J.B.W., van der Meer, T.H.: Int. J. Numer. Methods Fluids 54(9), 1131 (2007)

    Google Scholar 

  6. Lieuwen, T.C.: J. Propul. Power 18(1), 61 (2002)

    Google Scholar 

  7. Moeck, J.P., Bothien, M.R., Schimek, S., Lacarelle, A., Paschereit, C.O.: AIAA paper 2008-2946 (2008)

    Google Scholar 

  8. Dowling, A.P.: J. Fluid Mech. 346, 271 (1997)

    Google Scholar 

  9. Tyagi, M., Chakravarthy, S.R., Sujith, R.I.: Combust. Theor. Model. 11(2), 205 (2007)

    Google Scholar 

  10. Moeck, J.P., Oevermann, M., Klein, R., Paschereit, C.O., Schmidt, H.: Proc. Combust. Inst. 32(1), 1199 (2009)

    Google Scholar 

  11. Moeck, J.P., Bothien, M.R., Guyot, D., Paschereit, C.O.: King, R. (ed.) Active Flow Control. NNFM, vol. 95, pp. 408–421. Springer, Heidelberg (2007)

    Google Scholar 

  12. Guyot, D., Bothien, M.R., Moeck, J.P., Paschereit, C.O.: Proc. Appl. Math. Mech. 7, 4090015 (2007)

    Google Scholar 

  13. Bothien, M.R., Moeck, J.P., Paschereit, C.O.: J. Sound Vibr. 318, 678 (2008)

    Google Scholar 

  14. Seume, J.R., Vortmeyer, N., Krause, W., Hermann, J., Hantschk, C.C., Zangl, P., Gleis, S., Vortmeyer, D., Orthmann, A.: J. Eng. Gas Turbines Power 120, 721 (1998)

    Google Scholar 

  15. Gelbert, G., Moeck, J.P., Bothien, M.R., King, R., Paschereit, C.O.: AIAA paper 2008-1055 (2008)

    Google Scholar 

  16. King, R., Aleksic, K., Gelbert, G., Losse, N., Muminovic, R., Brunn, A., Nitsche, W., Bothien, M.R., Moeck, J.P., Paschereit, C.O., Noack, B.R., Rist, U., Zengl, M.: AIAA paper 2008-3975 (2008)

    Google Scholar 

  17. Moeck, J.P., Bothien, M.R., Paschereit, C.O., Gelbert, G., King, R.: AIAA paper 2007-1416 (2007)

    Google Scholar 

  18. Klein, R.: J. Comput. Phys. 121, 213 (1995)

    Google Scholar 

  19. Münch, M.: MOLOCH Ein Strömungsverfahren für inkompressible Strömungen – Technische Referenz 1.0. Tech. Rep. 109, Potsdam Institute for Climate Impact Research, PIK (2008)

    Google Scholar 

  20. Schneider, T., Botta, N., Geratz, K.J., Klein, R.: J. Comput. Phys. 155(2), 248 (1999)

    Google Scholar 

  21. Strang, G.: SIAM J. Numer. Anal. 5, 506 (1968)

    Google Scholar 

  22. Klein, R.: Theor. Comput. Fluid Dyn. 23, 161 (2009)

    Google Scholar 

  23. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, Edwards (2005)

    Google Scholar 

  24. Mohammadi, B., Pironneau, O.: Analysis of the K-Epsilon Turbulence Model, Masson, Paris (1993)

    Google Scholar 

  25. Lindstedt, R., Váos, E.: Combust. Flame 116(4), 461 (1999)

    Google Scholar 

  26. Harris, S.C.: Proc. R. Soc. Edinb. 129A, 503 (1999)

    Google Scholar 

  27. Majda, A.J., Souganidis, P.E.: Nonlinearity 7, 1 (1994)

    Google Scholar 

  28. Lieuwen, T.: J. Propul. Power 19(5), 765 (2003)

    Google Scholar 

  29. Noiray, N., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 615, 139 (2008)

    Google Scholar 

  30. Schimek, S., Moeck, J.P., Paschereit, C.O.: ASME paper GT2010-22827 (2010)

    Google Scholar 

  31. Paschereit, C.O., Schuermans, B., Bellucci, V., Flohr, P.: In: Lieuwen, T., Yang, V. (eds.) Combustion Instabilities in Gas Turbine Engines. Progress in Astronautics and Aeronautics, vol. 210, pp. 445–480. AIAA Inc. (2005)

    Google Scholar 

  32. Poinsot, T., le Chatelier, C., Candel, S.M., Esposito, E.: J. Sound Vibr. 107(2), 265 (1986)

    Google Scholar 

  33. Paschereit, C.O., Gutmark, E., Weisenstein, W.: AIAA paper 99-0711 (1999)

    Google Scholar 

  34. Hibshman, J.R., Cohen, J.M., Banaszuk, A., Anderson, T.J., Alholm, H.A.: ASME paper 99-GT-215 (1999)

    Google Scholar 

  35. Tran, N., Ducruix, S., Schuller, T.: Proc. Combust. Inst. 32(2), 2917 (2009)

    Google Scholar 

  36. Moeck, J.P., Bothien, M.R., Paschereit, C.O.: AIAA paper 2007-3540 (2007)

    Google Scholar 

  37. Bothien, M.R., Moeck, J.P., Paschereit, C.O.: J. Eng. Gas Turbines Power 132 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moeck, J.P., Scharfenberg, C., Paschereit, O., Klein, R. (2010). A Zero-Mach Solver and Reduced Order Acoustic Representations for Modeling and Control of Combustion Instabilities. In: King, R. (eds) Active Flow Control II. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11735-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11735-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11734-3

  • Online ISBN: 978-3-642-11735-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics