Skip to main content

Ensemble Learning

  • Chapter
Book cover Image Fusion

Abstract

The subject of this chapter is image fusion using the methods of ensemble learning. Ensemble learning is a method for constructing accurate predictors or classifiers from an ensemble of weak predictors or classifiers. In the context of image fusion, we use the term ensemble learning to denote the fusion of K input images I k ,k ∈ {1,2, . . .,K}, where the I k are all derived from the same base image I*. The I k themselves highlight different features in I*. The theory of ensemble learning suggests that by fusing together the I k we may obtain a fused image with a substantially improved quality. In the first part of the chapter we consider methods for constructing I k . In the second part we consider methods for fusing the I k .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bay, S.D.: Nearest neighbor classification for multiple feature subsets. Intell. Data Analy. 3, 191–209 (1999)

    Article  Google Scholar 

  2. Domeniconci, C., Yan, B.: Nearest neighbor ensemble. In: Proc. 17th Int. Conf. Patt. Recogn. (2004)

    Google Scholar 

  3. Giannarou, S., Stathaki, T.: Edge detection using quantitative combination of multiple operators. In: IEEE Workshop on Signal Process. Systems Design and Implement, pp. 359–364 (2005)

    Google Scholar 

  4. Hong, Y.: Random spatial sampling and majority voting based image thresholding. IEEE Signal Process. Lett. (2008)

    Google Scholar 

  5. Jarillo, G., Pedrycz, W., Reformat, M.: Aggregation of classifiers based on image transformations in biometric face recognition. Mach. Vis. Appl. 19, 125–140 (2008)

    Article  Google Scholar 

  6. Ko, A.H.-R., Sabourin, R., de Britto Jr., A.S.: Compound diversity functions for ensemble selection. Int. J. Patt. Recogn. Art. Intell. 23, 659–686 (2009)

    Article  Google Scholar 

  7. Krogh Vedelsby (1995)

    Google Scholar 

  8. Liu, C.-L., Marukawa, K.: Normalization ensemble for handwritten character recognition. In: Proc. 9th Int. Workshop on Frontiers in Handwriting Recogn. (2004)

    Google Scholar 

  9. Kuncheva, L.I.: Combining pattern Classifiers: Methods and Algorithms. John Wiley and Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  10. Mayo, M.: Random convolution ensembles. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 216–225. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Melgani, F.: Robust image binarization with ensembles of thresholding algorithms. J. Elect. Imaging 15, 023010 (2006)

    Google Scholar 

  12. Nanni, L., Lumini, A.: Fusion of color spaces for ear authentication. Patt. Recogn. 42, 1906–1913 (2009)

    Article  MATH  Google Scholar 

  13. Okum, O., Valentini, G.: Supervised and Unsupervised Ensemble Methods and Their Applications. Springer, Heidelberg (2008)

    Book  Google Scholar 

  14. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: WND-CHARM: Multi-purpose image classification using compound image transforms. Patt. Recogn. Lett. 29, 1684–1693 (2008)

    Article  Google Scholar 

  15. Oza, N.C., Tumer, K.: Classifier ensembles: select real-world applications. Inf. Fusion 9, 4–20 (2008)

    Article  Google Scholar 

  16. Rohlfing, T., Maurer Jr., C.R.: Multiclassifier framework for atlas-based image segmentation. Patt. Recogn. Lett. 26, 2070–2079 (2005)

    Article  Google Scholar 

  17. Sharifi, M., Fathy, M., Mahmoudi, M.T.: A classified and comparative study of edge detection algorithms. In: Proc. Int. Conf. Information Technology: Coding and Computing, pp. 117–120 (2002)

    Google Scholar 

  18. Rokach, L.: Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Comp. Stat. Data Anal. 53, 4046–4072 (2009)

    Article  Google Scholar 

  19. Wang, H., Suter, D.: False-peaks-avoiding mean shift method for unsupervised peak-valley sliding image segmentation. In: Proc 7th Digital Image Computing: Techniques and Applications, pp. 581–590 (2003)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitchell, H.B. (2010). Ensemble Learning. In: Image Fusion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11216-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11216-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11215-7

  • Online ISBN: 978-3-642-11216-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics